New experiments in 2013-2014 have investigated the physics responsible for the decrease in H-mode pedestal confinement observed in the initial phase of JET-ILW operation (2012 Experimental Campaigns). The effects of plasma triangularity, global beta and neutrals-both D and low-Z impurities-on pedestal confinement and stability have been investigated systematically. The stability of JET-ILW pedestals is analysed in the framework of the Peeling-Ballooning model and the pedestal predictive code EPED. Low D neutrals content in the plasma, achieved either by low D 2 gas injection rates or by divertor configurations with optimum pumping, and high beta are necessary conditions for good pedestal (and core) performance. In such conditions the pedestal stability is consistent with the Peeling-Ballooning paradigm. Moderate to high D 2 gas rates, required for W control and stable H-mode operation with the ILW, lead to increased D neutrals content in the plasma and additional physics in the pedestal models may be required to explain the onset of the ELM instability. The physics mechanism leading to the beneficial increase in pedestal temperature with N 2 seeding in high triangularity JET-ILW H-modes is not yet understood. The changes in H-mode performance associated with the change in JET wall composition from C to Be/W point to D neutrals and low-Z impurities playing a role in pedestal stability, elements which are not currently included in pedestal models. These aspects need to be addressed in order to progress towards full predictive capability of the pedestal height.
This paper reports the successful installation of the JET ITER-like Wall and the realisation of its technical objectives. It also presents an overview of the planned experimental programme which has been optimised to exploit the new wall and other JET enhancement in 2011/12. IntroductionThe ITER reference materials [pitts] have been tested in isolation in tokamaks, plasma simulators, ion beams and high heat flux test beds. However, an integrated test demonstrating both acceptable tritium retention, predicted to be one to two orders of magnitude lower than for a carbon wall [roth], and an ability to operate a large high power tokamak within the limits set by these materials has not yet been carried out. The ITER-like Wall now installed in JET by remote handling comprises solid beryllium limiters and a combination of bulk W and Wcoated CFC divertor tiles.Work is also well advanced in defining the 2011/12 JET experimental programme and setting up the teams. A phased approach will be adopted which maximises the scientific output early in the programme on the basic materials and fuel retention questions whilst minimising the risk associated with operation in an all metal machine. However, re-establishing H-modes at similar power levels to those with the carbon walls is a priority for establishing a reference database. The JET upgrades also include an increase in neutral beam heating power, up to 35MW for 20s [ciric], this has led to a requirement that the most critical first wall Be and W components are monitored in real time by an appropriate imaging protection system [Alves, Jouve, Stephen]. In the main chamber, an array of thermocouples has been fitted to unambiguously monitor the bulk temperature of critical tiles. Before this upgrade, only a divertor system was available which proved essential for interpretation of IR data [Eich] and this will be even more the case with an all metal wall due to reflection and uncertain emissivity. Safe expansion of operating space will also be a priority. Experiments will have to be carefully managed if they have the potential to jeopardise interpretation of the long term samples which are planned to be removed in a 2012 intervention. Here the concern is that
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.