A high spectral resolution observation of the diffuse X-ray background in the 60 -1000 eV energy range has been made using an array of thirty-six 1 mm 2 microcalorimeters flown on a sounding rocket. Detector energy resolution ranged from 5-12 eV FWHM, and a composite spectrum of 1 steradian of the background centered at l = 90°, b = +60° was obtained with a net resolution of ~ 9 eV. The target area includes bright 1/4 keV regions, but avoids Loop I and the North Polar Spur. Lines of C VI, O VII, and O VIII are clearly detected with intensities of 5.4 ± 2.3, 4.8 ± 0.8, and 1.6 ± 0.4 photons cm -2 s -1 sr -1 , respectively. The oxygen lines alone account for a majority of the diffuse background observed in the ROSAT R4 band that is not due to resolved extragalactic discrete sources. We also have a positive detection of the Fe-M line complex near 70 eV at an intensity consistent with previous upper limits that indicate substantial gas phase depletion of iron. We include a detailed description of the instrument and its detectors.
The energy splitting of the 229Th ground-state doublet is measured to be 7.6+/-0.5 eV, significantly greater than earlier measurements. Gamma rays produced following the alpha decay of 233U (105 muCi) were counted in the NASA/electron beam ion trap x-ray microcalorimeter spectrometer with an experimental energy resolution of 26 eV (FWHM). A difference technique was applied to the gamma-ray decay of the 71.82 keV level that populates both members of the doublet. A positive correction amounting to 0.6 eV was made for the unobserved interband decay of the 29.19 keV state (29.19-->0 keV).
High-sensitivity wide-band X-ray spectroscopy is the key feature of the Suzaku X-ray observatory, launched on 2005 July 10. This paper summarizes the spacecraft, in-orbit performance, operations, and data processing that are related to observations. The scientific instruments, the high-throughput X-ray telescopes, X-ray CCD cameras, non-imaging hard X-ray detector are also described.
In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.