A Rhesus D (RhD) red blood cell phenotype with a weak expression of the D antigen occurs in 0.2% to 1% of whites and is called weak D, formerly Du. Red blood cells of weak D phenotype have a much reduced number of presumably complete D antigens that were repeatedly reported to carry the amino acid sequence of the regular RhD protein. The molecular cause of weak D was unknown. To evaluate the molecular cause of weak D, we devised a method to sequence all 10RHD exons. Among weak D samples, we found a total of 16 different molecular weak D types plus two alleles characteristic of partial D. The amino acid substitutions of weak D types were located in intracellular and transmembraneous protein segments and clustered in four regions of the protein (amino acid positions 2 to 13, around 149, 179 to 225, and 267 to 397). Based on sequencing, polymerase chain reaction-restriction fragment length polymorphism and polymerase chain reaction using sequence-specific priming, none of 161 weak D samples investigated showed a normal RHD exon sequence. We concluded, that in contrast to the current published dogma most, if not all, weak D phenotypes carry altered RhD proteins, suggesting a causal relationship. Our results showed means to specifically detect and to classify weak D. The genotyping of weak D may guide Rhesus negative transfusion policy for such molecular weak D types that were prone to develop anti-D.
The rate of confirmed bacterial contamination of PC units was low. Nevertheless, clinicians must be aware of this risk. The risk of bacterial contamination does not warrant universal preference of APCs. It must be questioned whether routine bacterial screening by a culture method can sufficiently prevent contaminated products from being transfused due to the delay until a positive signal in the culture system and due to false-negative results.
A Rhesus D (RhD) red blood cell phenotype with a weak expression of the D antigen occurs in 0.2% to 1% of whites and is called weak D, formerly Du. Red blood cells of weak D phenotype have a much reduced number of presumably complete D antigens that were repeatedly reported to carry the amino acid sequence of the regular RhD protein. The molecular cause of weak D was unknown. To evaluate the molecular cause of weak D, we devised a method to sequence all 10RHD exons. Among weak D samples, we found a total of 16 different molecular weak D types plus two alleles characteristic of partial D. The amino acid substitutions of weak D types were located in intracellular and transmembraneous protein segments and clustered in four regions of the protein (amino acid positions 2 to 13, around 149, 179 to 225, and 267 to 397). Based on sequencing, polymerase chain reaction-restriction fragment length polymorphism and polymerase chain reaction using sequence-specific priming, none of 161 weak D samples investigated showed a normal RHD exon sequence. We concluded, that in contrast to the current published dogma most, if not all, weak D phenotypes carry altered RhD proteins, suggesting a causal relationship. Our results showed means to specifically detect and to classify weak D. The genotyping of weak D may guide Rhesus negative transfusion policy for such molecular weak D types that were prone to develop anti-D.
A PCR method of detecting the common weak D types was validated. This PCR system introduces a simple and rapid tool for routine DNA typing of weak D samples. The results confirmed that all weak D phenotype samples identified by current serologic criteria carry altered D proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.