A search for the Standard Model Higgs boson in proton–proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb−1 collected at √s=7 TeV in 2011 and 5.8 fb−1 at √s=8 TeV in 2012. Individual searches in the channels H→ZZ(⁎)→4ℓ, H→γγ and H→WW(⁎)→eνμν in the 8 TeV data are combined with previously published results of searches for H→ZZ(⁎), WW(⁎), bb and τ+τ− in the 7 TeV data and results from improved analyses of the H→ZZ(⁎)→4ℓ and H→γγ channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of 126.0±0.4(stat)±0.4(sys) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9, is compatible with the production and decay of the Standard Model Higgs boson
A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H → γγ and H → ZZ → 4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is m H ¼ 125.09 AE 0.21 ðstatÞ AE 0.11 ðsystÞ GeV. DOI: 10.1103/PhysRevLett.114.191803 PACS numbers: 14.80.Bn, 13.85.Qk The study of the mechanism of electroweak symmetry breaking is one of the principal goals of the CERN LHC program. In the standard model (SM), this symmetry breaking is achieved through the introduction of a complex doublet scalar field, leading to the prediction of the Higgs boson H [1-6], whose mass m H is, however, not predicted by the theory. In 2012, the ATLAS and CMS Collaborations at the LHC announced the discovery of a particle with Higgs-boson-like properties and a mass of about 125 GeV [7][8][9]. The discovery was based primarily on mass peaks observed in the γγ and ZZ → l þ l − l 0þ l 0−(denoted H → ZZ → 4l for simplicity) decay channels, where one or both of the Z bosons can be off shell and where l and l 0 denote an electron or muon. With m H known, all properties of the SM Higgs boson, such as its production cross section and partial decay widths, can be predicted. Increasingly precise measurements [10][11][12][13] have established that all observed properties of the new particle, including its spin, parity, and coupling strengths to SM particles are consistent within the uncertainties with those expected for the SM Higgs boson.The ATLAS and CMS Collaborations have independently measured m H using the samples of proton-proton collision data collected in 2011 and 2012, commonly referred to as LHC Run 1. The analyzed samples correspond to approximately 5 fb −1 of integrated luminosity at ffiffi ffi s p ¼ 7 TeV, and 20 fb −1 at ffiffi ffi s p ¼ 8 TeV, for each experiment. Combined results in the context of the separate experiments, as well as those in the individual channels, are presented in Refs. [12,[14][15][16].This Letter describes a combination of the Run 1 data from the two experiments, leading to improved precision for m H . Besides its intrinsic importance as a fundamental parameter, improved knowledge of m H yields more precise predictions for the other Higgs boson properties. Furthermore, the combined mass measurement provides a first step towards combinations of other quantities, such as the couplings. In the SM, m H is related to the values of the masses of the W boson and top quark through loopinduced effects. Taking into account other measured SM quantities, the comparison of the measurements of the Higgs boson, W boson, and top quark masses can be used to directly test the consistency of the SM [17] and thus to search for evidence of physics beyond the SM.The combination is performed usin...
This article documents the performance of the ATLAS muon identification and reconstruction using the LHC dataset recorded at TeV in 2015. Using a large sample of and decays from 3.2 fb of pp collision data, measurements of the reconstruction efficiency, as well as of the momentum scale and resolution, are presented and compared to Monte Carlo simulations. The reconstruction efficiency is measured to be close to over most of the covered phase space ( and GeV). The isolation efficiency varies between 93 and depending on the selection applied and on the momentum of the muon. Both efficiencies are well reproduced in simulation. In the central region of the detector, the momentum resolution is measured to be () for muons from () decays, and the momentum scale is known with an uncertainty of . In the region , the resolution for muons from decays is while the precision of the momentum scale for low- muons from decays is about .
A search is conducted for new resonant and non-resonant high-mass phenomena in dielectron and dimuon final states. The search uses 36.1 fb −1 of proton-proton collision data, collected at √ s = 13 TeV by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the Standard Model prediction is observed. Upper limits at 95% credibility level are set on the cross-section times branching ratio for resonances decaying into dileptons, which are converted to lower limits on the resonance mass, up to 4.1 TeV for the E 6 -motivated Z χ . Lower limits on the qq contact interaction scale are set between 2.4 TeV and 40 TeV, depending on the model. Conclusion 21A Dilepton invariant mass tables 22The ATLAS collaboration 44 IntroductionThis article presents a search for resonant and non-resonant new phenomena, based on the analysis of dilepton final states (ee and µµ) in proton-proton (pp) collisions with the ATLAS detector at the Large Hadron Collider (LHC) operating at √ s = 13 TeV. The data set was collected during 2015 and 2016, and corresponds to an integrated luminosity of 36.1 fb −1 . In the search for new physics carried out at hadron colliders, the study of -1 - JHEP10(2017)182dilepton final states provides excellent sensitivity to a large variety of phenomena. This experimental signature benefits from a fully reconstructed final state, high signal-selection efficiencies and relatively small, well-understood backgrounds, representing a powerful test for a wide range of theories beyond the Standard Model (SM).Models with extended gauge groups often feature additional U(1) symmetries with corresponding heavy spin-1 bosons. These bosons, generally referred to as Z , would manifest as a narrow resonance through its decay, in the dilepton mass spectrum. Among these models are those inspired by Grand Unified Theories, which are motivated by gauge unification or a restoration of the left-right symmetry violated by the weak interaction. Examples considered in this article include the Z bosons of the E 6 -motivated [1,2] theories as well as Minimal models [3]. The Sequential Standard Model (SSM) [2] is also considered due to its inherent simplicity and usefulness as a benchmark model. The SSM manifests a Z SSM boson with couplings to fermions equal to those of the SM Z boson.The most sensitive previous searches for a Z boson decaying into the dilepton final state were carried out by the ATLAS and CMS collaborations [4,5]. Using 3.2 fb −1 of pp collision data at √ s = 13 TeV collected in 2015, ATLAS set a lower exclusion limit at 95% credibility level (CL) on the Z SSM pole mass of 3.4 TeV for the combined ee and µµ channels. Similar limits were set by CMS using the 2015 data sample.This search is also sensitive to a series of other models that predict the presence of narrow dilepton resonances. These models include the Randall-Sundrum (RS) model [6] with a warped extra dimension giving rise to spin-2 graviton excitations, the quantum black-hole model [7], the Z * model [8], and the minimal wal...
A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in √ s = 8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb −1 . Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first-and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and µ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.