The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
Extracellular vesicles (EVs) are shed by many different cell types. Their nucleic acids content offers new opportunities for biomarker research in different solid tumors. The role of EV RNA in prostate cancer (PCa) is still largely unknown. EVs were isolated from different benign and malignant prostate cell lines and blood plasma from patients with PCa (n = 18) and controls with benign prostatic hyperplasia (BPH) (n = 7). Nanoparticle tracking analysis (NTA), Western blot, electron microscopy, and flow cytometry analysis were used for the characterization of EVs. Non-coding RNA expression profiling of PC3 metastatic PCa cells and their EVs was performed by next generation sequencing (NGS). miRNAs differentially expressed in PC3 EVs were validated with qRT-PCR in EVs derived from additional cell lines and patient plasma and from matched tissue samples. 92 miRNAs were enriched and 48 miRNAs were depleted in PC3 EVs compared to PC3 cells, which could be confirmed by qRT-PCR. miR-99b-5p was significantly higher expressed in malignant compared to benign EVs. Furthermore, expression profiling showed miR-10a-5p (p = 0.018) and miR-29b-3p (p = 0.002), but not miR-99b-5p, to be overexpressed in plasma-derived EVs from patients with PCa compared with controls. In the corresponding tissue samples, no significant differences in the miRNA expression could be observed. We thus propose that EV-associated miR-10a-5p and miR-29b-3p could serve as potential new PCa detection markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.