The identification of somatic mutations is crucial for guiding therapeutic decisions about personalized melanoma treatment. However, genetic analysis of tumors is usually performed on limited and often low-quality DNA from tumors with low tumor cellularity and high tumor heterogeneity. Different mutation-detection platforms exist, with varying analytical sensitivities. Here we evaluated the detection of common mutations in BRAF, NRAS, and TERT promoter in 40 melanoma FFPE tissues using Droplet Digital (dd)PCR, and compared the results to the detection rates obtained by Sanger sequencing and pyrosequencing. The cellularity of tumors analyzed ranged from 5% to 50% (n = 28) and 50% to 90% (n = 12). Overall, droplet digital (dd)PCR was more sensitive, detecting mutations in 12.5% and 23% of tumors deemed as wild-type by pyrosequencing and Sanger sequencing, respectively. The increased sensitivity of ddPCR was more apparent among tumors with <50% tumor cellularity. Implementation of ddPCR-based assays may facilitate analysis of early-stage tumors and support research into improving outcomes in melanoma patients.
Frost, MBBS, FRCPA, FIAC, Dip Cytopathol (RCPA) 1 BACKGROUND The objective of this study was to develop a triage algorithm to optimize diagnostic yield from cytology, carcinoembryonic antigen (CEA), and v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) testing on different components of a single pancreatic cyst fluid specimen. The authors also sought to determine whether cell block supernatant was suitable for CEA and KRAS testing. METHODS Fifty-four pancreatic cysts were triaged according to a volumedependent protocol to generate fluid (neat and supernatant) and cell block specimens for cytology, comparative CEA, and KRAS testing. Follow-up histology, diagnostic cytology, or a combined clinicopathologic interpretation was recorded as the final diagnosis. RESULTS There were 26 mucinous cystic lesions and 28 nonmucinous cystic lesions with volumes ranging from 0.3 mL to 55 mL. Testing different components of the specimens (cell block, neat, and/or supernatant) enabled all laboratory investigations to be performed on 50 of 54 cyst fluids (92.6%). Interpretive concordance was observed in 17 of 17 cases (100%) and in 35 of 40 cases (87.5%) that had multiple components tested for CEA and KRAS mutations, respectively. An elevated CEA level (>192 ng/mL) was the most sensitive test for the detection of a mucinous cystic lesion (62.5%) versus KRAS mutation (56%) and ''positive'' cytology (61.5%). KRAS mutations were identified in 2 of 25 mucinous cystic lesions (8%) in which cytology and CEA levels were not contributory. CONCLUSIONS A volume-based protocol using different components of the specimen was able to optimize diagnostic yield in pancreatic cyst fluids.KRAS mutation testing increased diagnostic yield when combined with cytology and CEA analysis. The current results demonstrated that supernatant is comparable to neat fluid and cell block material for CEA and KRAS testing. Cancer (Cancer Cytopathol) 2013;121:86-100.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.