The presence of residual endodontic sealer in the pulp chamber may cause discoloration of the dental crown and interfere with the adhesion of restorative materials. The aim of this study was to compare the efficacy of different solvents in removing residues of an epoxy resin-based sealer (AH Plus) from the dentin walls of the pulp chamber, by scanning electron microscopy (SEM). Forty-four bovine incisor dental crown fragments were treated with 17% EDTA and 2.5% NaOCl. Specimens received a coating of AH Plus and were left undisturbed for 5 min. Then, specimens were divided in four groups (n = 10) and cleaned with one of the following solutions: isopropyl alcohol, 95% ethanol, acetone solution, or amyl acetate solution. Negative controls (n = 2) did not receive AH Plus, while in positive controls (n = 2) the sealer was not removed. AH Plus removal was evaluated by SEM, and a score system was applied. Data were analyzed by Kruskal-Wallis and Dunn tests. None of the solutions tested was able to completely remove AH Plus from the dentin of the pulp chamber. Amyl acetate performed better than 95% ethanol and isopropyl alcohol (p < 0.05), but not better than acetone (p > 0.05) in removing the sealer from dentin. No significant differences were observed between acetone, 95% ethanol, and isopropyl alcohol (p > 0.05). It was concluded that amyl acetate and acetone may be good options for cleaning the pulp chamber after obturation with AH Plus.
This study evaluated the in vitro antibacterial activity of conventional and experimental endodontic irrigants against Enterococcus faecalis. The following substances were evaluated by direct contact test: 2.5% sodium hypochlorite (NaOCl); 2% chlorhexidine (CHX); 1% peracetic acid. After different contact periods (30 s, 1, 3, and 10 min), a neutralizing agent was applied. Serial 10-fold dilutions were prepared and plated onto tryptic soy agar (TSA) and the number of colony-forming units per milliliter (CFU/mL) was determined. Sterile saline was used as a negative control. Both 2.5% NaOCl and 2% CHX eliminated E. faecalis after 30 s of contact. Peracetic acid reduced the bacterial counts by 86% after 3 min and completely eliminated E. faecalis after 10 min. These results allow us to conclude that 1% peracetic acid is effective against E. faecalis, despite its slower action compared with 2.5% NaOCl and 2% CHX.
The release and diffusion of hydroxyl ions (OH(-)) of calcium hydroxide (Ca(OH)(2))-based intracanal medications may be affected by the association with other substances. The aim of this study was to evaluate the diffusion of OH- ions through root dentin by the medications: G1, Ca(OH)(2)/saline; G2, Calen; G3, Calen/camphorated p-monochlorophenol (CMCP); and G4, Calen/0.4% chlorhexidine (CHX). Root canals from bovine teeth were prepared in a standardized manner. A cavity until dentin was prepared in the middle third of the root surface of each specimen. The external surface of the root was made impermeable using a layer of adhesive, except the prepared cavity. The root canals were filled with different medications, and teeth were individually stored in flasks containing 10 ml distilled water at 37°C. The water pH was measured at 1, 3, 7, 14, 21, 30, and 60 days. Data obtained were subjected to anova and Tukey's tests. Increase in pH was observed at 3 days for Calen/CHX and from 7 to 14 days for the other mixtures. Calen paste promoted pH increase up to 21 days. Calen/CMCP had the highest pH up to 21 days, and all groups had similar results at 30 days. At 60 days, the greatest pH values were observed for Calen/CMCP and Calen alone. All different formulations of Ca(OH)(2)-based medications tested release hydroxyl ion that can diffuse through the dentin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.