S U M M A R YHere we report the preliminary results of GPS data inversions for coseismic and initial afterslip distributions of the M w 6.3 2009 April 6 L'Aquila earthquake. Coseismic displacements of continuous and survey-style GPS sites, show that the earthquake ruptured a planar SW-dipping normal fault with ∼0.6 m average slip and an estimated moment of 3.9 × 10 18 Nm. Geodetic data agree with the seismological and geological information pointing out the Paganica fault, as the causative structure of the main shock. The position of the hypocentre relative to the coseismic slip distribution supports the seismological evidence of southeastward rupture directivity. These results also point out that the main coseismic asperity probably ended downdip of the Paganica village at a depth of few kilometres in agreement with the small (1-10 cm) observed surface breaks. Time-dependent post-seismic displacements have been modelled with an exponential function. The average value of the estimated characteristic times for near-field sites in the hanging-wall of the fault is 23.9 ± 5.4 d. The comparison between coseismic slip and post-seismic displacements for the first 60 d after the main shock, shows that afterslip occurred at the edges of the main coseismic asperity with a maximum estimated slip of ∼25 cm and an equivalent seismic moment of 6.5 × 10 17 Nm. The activation of the Paganica fault, spatially intermediate between the previously recognized main active fault systems, suggests that strain accumulation in the central Apennines may be simultaneously active on distinct parallel fault systems.
This work presents an analysis of the applicability of synthetic aperture radar (SAR) interferometry to landslide monitoring. This analysis was carried out by using different interferometric approaches, different spaceborne SAR data (both in the C-band and in the X-band), and in situ global navigation satellite system (GNSS) measurements. In particular, we investigated both the reliability of displacement monitoring and the issues of the cross-comparison and validation of the interferometric synthetic aperture radar (InSAR) results. The work was focused on the slow-moving landslide that affects a relevant part of the urban area of the historical town of Assisi (Italy).A C-band ENVISAT advanced synthetic aperture radar (ENVISAT ASAR) dataset acquired between 2003 and 2010 was processed by using two different interferometric techniques, to allow cross-comparison of the obtained displacement maps. Good correspondence between the results was found, and a deeper analysis of the movement field was possible. Results were further compared to a set of GNSS measurements with a 7 year overlap with SAR data. A comparison was made for each GNSS marker with the surrounding SAR scatterers, trying to take into account local topological effects, when possible.Further, the high-resolution X-band acquired on both ascending and descending tracks by the COSMO-SkyMed (CSK) constellation was processed. The resultant displacement fields show good agreement with C-band and GNSS measurements and a sensible increase in the density of measurements.
The suitability of a smartphone camera for the structure from motion (SfM) reconstruction for monitoring variations in soil surface characteristics and soil loss originated by a low intensity erosive event was evaluated. Terrestrial laser scanning (TLS) was used to validate the SfM model. Two surveys of the soil surface, one before and one after the rainfall event, were carried out for SfM and TLS. The point clouds obtained by the SfM were compared to the TLS point clouds (used as reference). From the point clouds, digital elevation models (DEMs) (0.01 m × 0.01 m) were obtained. The differences of the DEMs (DoDs) obtained from the two surveys for SfM and TLS were compared. To assess the uncertainty of the DEMs, from the DoDs the minimum level of detection was derived. The soil loss was evaluated from DoDs (for SfM and TLS, respectively) considering negative values as erosion and positive values as deposition. The SfM appears appropriate and sensitive for detecting small soil surface variations induced by low erosive events. The SfM estimated correctly the measured soil loss, while TLS underestimated 26%. Further studies could be carried out to consolidate these first results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.