-The purpose of this study was to examine the relationship between cadence and oxygen consumption with exercise duratian. Ten triathletes who trained regularly were examined. The first test was always a maximal test to determine maximal oxy~ gen uptake (VOzmax). The other sessions were composed of six submaximal tests representing 80% of the maximal power reached with VOzmax (Pmax). During these tests submaximal rides with a duration of 30 min were performed. Each test represented, in a randomised arder, one of the following pedal rates: 50, 65, Bd, 95,110 rpm and a freely-chosen rate. \/0 2 , respiratory parameters, and heart rate were monitored continuously. Two periods, between the 3rd and the 6th minute and between the 25th and the 28th minute, were analysed. Results showed that when \/0 2 and heart rate were plotted against cadence, each curve could be best described by a parabolic function, whatever the period. Furthermore, a significant effect of period was fou nd on energetically optimal cadence (70 ± 4.5 vs. 86 ± 6.2 rpm, P < 0.05). Only during the second period was no significant difference found between freely-chosen cadence (83 ± 6.9 rpm} and energetically optimal cadence (P > 0.05). ln conclusion, our results suggest that during prolonged exercise triathletes choose a cadence that is close to the energetically optimal cadence. A change of muscle fibre recruitment pattern with exercise duration and cadence Would explain the shift in energetically optimal rate towards a higher pedal rate observed at the end of exercise.•
To determine the acute effects of a trail running competition and the age-dependent differences between young and master athletes, 23 subjects [10 young (30.5 ± 7 years), 13 master (45.9 ± 5.9 years)] participated in a 55-km trail running competition. The study was conceived as an intervention study compromising pre, post 1, 24, 48 and 72 h measurements. Measurements consisted of blood tests, ergometer cycling and maximal isometric voluntary contractions (MVC). Parameters monitored included MVC, twitch- and M-wave properties, EMG (RMS) of the vastus lateralis, two locomotion efficiency calculations and muscle damage markers in the blood (CK, LDH). Results indicate post-race increases in CK and LDH, decreases in MVC values (-32 vs. -40% in young and master, P < 0.01), decreases in EMG, increases in contraction time and concomitant decreases in peak twitch values, and a decrease in locomotion efficiency (-4.6 vs. -6.3% in young and master, P < 0.05). Masters showed similar fatigue and muscle damage than young but recuperation was slowed in masters. This study shows that trail runs are detrimental to muscle function, and gives indication that training may not halt muscle deterioration through aging, but can help maintain performance level.
Wearing CS during simulated trail races mainly affects perceived leg soreness and muscle function. These benefits are visible very shortly after the start of the recovery period.
Introduction: The aim of this study was to examine, from a crossover experimental design, whether wearing high-pressure compression garments (CGs) during downhill treadmill running affects soft-tissue vibrations, acute and delayed responses in running economy (RE), neuromuscular function, countermovement jump, and perceived muscle soreness.Methods: Thirteen male trail runners habituated to regular eccentric training performed two separate 40-min downhill running (DHR, –8.5°) sessions while wearing either CGs (15–20 mmHg for quadriceps and calves) or control garments (CON) at a velocity associated with ∼55% of VO2max, with a set of measurements before (Pre-), after (Post-DHR), and 1 day after (Post-1D). No CGs was used within the recovery phase. Perceived muscle soreness, countermovement jump, and neuromuscular function (central and peripheral components) of knee extensors (KE) and plantar flexors (PF) were assessed. Cardiorespiratory responses (e.g., heart rate, ventilation) and RE, as well as soft-tissue vibrations (root mean square of the resultant acceleration, RMS Ar) for vastus lateralis and gastrocnemius medialis were evaluated during DHR and in Post-1D.Results: During DHR, mean values in RMS Ar significantly increased over time for the vastus lateralis only for the CON condition (+11.6%). RE and cardiorespiratory responses significantly increased (i.e., alteration) over time in both conditions. Post, small to very large central and peripheral alterations were found for KE and PF in both conditions. However, the deficit in voluntary activation (VA) was significantly lower for KE following CGs (–2.4%), compared to CON (–7.9%) conditions. No significant differences in perceived muscle soreness and countermovement jump were observed between conditions whatever the time period. Additionally, in Post-1D, the CGs condition showed reductions in neuromuscular peripheral alterations only for KE (from –4.4 to –7.7%) and perceived muscle soreness scores (–8.3%). No significant differences in cardiorespiratory and RE responses as well as countermovement jump were identified between conditions in Post-1D.Discussion: Wearing high-pressure CGs (notably on KE) during DHR was associated with beneficial effects on soft-tissue vibrations, acute and delayed neuromuscular function, and perceived muscle soreness. The use of CGs during DHR might contribute to the enhanced muscle recovery by exerting an exercise-induced “mechanical protective effect.”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.