Background-Mutations in the cardiac ryanodine receptor gene (RyR2) underlie catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmogenic disease occurring in the structurally intact heart. The proportion of patients with CPVT carrying RyR2 mutations is unknown, and the clinical features of RyR2-CPVT as compared with nongenotyped CPVT are undefined. Methods and Results-Patients with documented polymorphic ventricular arrhythmias occurring during physical or emotional stress with a normal heart entered the study. The clinical phenotype of the 30 probands and of 118 family members was evaluated, and mutation screening on the RyR2 gene was performed. Arrhythmias documented in probands were: 14 of 30 bidirectional ventricular tachycardia, 12 of 30 polymorphic ventricular tachycardia, and 4 of 30 catecholaminergic idiopathic ventricular fibrillation; RyR2 mutations were identified in 14 of 30 probands (36% bidirectional ventricular tachycardia, 58% polymorphic ventricular tachycardia, 50% catecholaminergic idiopathic ventricular fibrillation) and in 9 family members (4 silent gene carriers). Genotype-phenotype analysis showed that patients with RyR2 CPVT have events at a younger age than do patients with nongenotyped CPVT and that male sex is a risk factor for syncope in RyR2-CPVT (relative riskϭ4.2). Conclusions-CPVT is a clinically and genetically heterogeneous disease manifesting beyond pediatric age with a spectrum of polymorphic arrhythmias. -Blockers reduce arrhythmias, but in 30% of patients an implantable defibrillator may be required. Genetic analysis identifies two groups of patients: Patients with nongenotyped CPVT are predominantly women and become symptomatic later in life; patients with RyR2 CPVT become symptomatic earlier, and men are at higher risk of cardiac events. These data provide a rationale for prompt evaluation and treatment of young men with RyR2 mutations. (Circulation. 2002;106:69-74.)
The Popeye domain-containing 1 (POPDC1) gene encodes a plasma membrane-localized cAMP-binding protein that is abundantly expressed in striated muscle. In animal models, POPDC1 is an essential regulator of structure and function of cardiac and skeletal muscle; however, POPDC1 mutations have not been associated with human cardiac and muscular diseases. Here, we have described a homozygous missense variant (c.602C>T, p.S201F) in POPDC1, identified by whole-exome sequencing, in a family of 4 with cardiac arrhythmia and limb-girdle muscular dystrophy (LGMD). This allele was absent in known databases and segregated with the pathological phenotype in this family. We did not find the allele in a further screen of 104 patients with a similar phenotype, suggesting this mutation to be family specific. Compared with WT protein, POPDC1S201F displayed a 50% reduction in cAMP affinity, and in skeletal muscle from patients, both POPDC1S201F and WT POPDC2 displayed impaired membrane trafficking. Forced expression of POPDC1S201F in a murine cardiac muscle cell line (HL-1) increased hyperpolarization and upstroke velocity of the action potential. In zebrafish, expression of the homologous mutation (popdc1S191F) caused heart and skeletal muscle phenotypes that resembled those observed in patients. Our study therefore identifies POPDC1 as a disease gene causing a very rare autosomal recessive cardiac arrhythmia and LGMD, expanding the genetic causes of this heterogeneous group of inherited rare diseases
In children with structurally normal hearts, the mechanisms of arrhythmias are usually the same as in the adult patient. Some arrhythmias are particularly associated with young age and very rarely seen in adult patients. Arrhythmias in structural heart disease may be associated either with the underlying abnormality or result from surgical intervention. Chronic haemodynamic stress of congenital heart disease (CHD) might create an electrophysiological and anatomic substrate highly favourable for re-entrant arrhythmias. As a general rule, prescription of antiarrhythmic drugs requires a clear diagnosis with electrocardiographic documentation of a given arrhythmia. Risk-benefit analysis of drug therapy should be considered when facing an arrhythmia in a child. Prophylactic antiarrhythmic drug therapy is given only to protect the child from recurrent supraventricular tachycardia during this time span until the disease will eventually cease spontaneously. In the last decades, radiofrequency catheter ablation is progressively used as curative therapy for tachyarrhythmias in children and patients with or without CHD. Even in young children, procedures can be performed with high success rates and low complication rates as shown by several retrospective and prospective paediatric multi-centre studies. Three-dimensional mapping and non-fluoroscopic navigation techniques and enhanced catheter technology have further improved safety and efficacy even in CHD patients with complex arrhythmias. During last decades, cardiac devices (pacemakers and implantable cardiac defibrillator) have developed rapidly. The pacing generator size has diminished and the pacing leads have become progressively thinner. These developments have made application of cardiac pacing in children easier although no dedicated paediatric pacing systems exist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.