Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
A series of new thiazoline derivatives were synthesized. Structure analyses were accomplished employing 1H-NMR, 13C-NMR, X-ray and MS techniques. The in vitro antitumor activities were assessed against human hepatocellular carcinoma (HepG-2) and colorectal carcinoma (HCT-116) cell lines. The results revealed that the thiazolines 5b and 2c exhibited significant activity against the two cell lines. The in vitro antimicrobial screening showed that the thiazolines 2c, 5b and 5d showed promising inhibition activity against Salmonella sp. Additionally, the inhibition activity of thiazolines 2e and 5b against Escherichia coli was comparable to that of the reference compound gentamycin.
The pharmacological activities of thiazole and pyrazole moieties as antimicrobial and anticancer agents have been thoroughly described in many literature reviews. In this study, a convenient synthesis of novel pyrazolo[5,1-b]thiazole-based heterocycles was carried out. The synthesized compounds were characterized by IR, 1H and 13C NMR spectroscopy and mass spectrometry. Some selected examples were screened and evaluated for their antimicrobial and anticancer activities and showed promising results. These products could serve as leading compounds in the future design of new drug molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.