ultivated peanut or groundnut (A. hypogaea L.) is among the most important oil and food legumes, grown on 25 million ha between latitudes 40° N and 40° S with annual production of ~46 million tons (http://www.fao.org/faostat/en/#home). It presumably was domesticated in South America ~6,000 years ago and then was widely distributed in post-Columbian times 1. Combining richness in seed oil (~46-58%) and protein (~22-32%), peanut is important in fighting malnutrition and ensuring food security.
Background B-box (BBX) proteins are important factors involving in the regulation of plant growth and development, and have been identified in many plant species. However, the characteristics and transcription patterns of BBX genes in wild peanut are limited. Results In the present study, we identified and characterized 24 BBX genes in a wild peanut Arachis duranensis. The AdBBX members distributed on 9 of the 10 chromosomes and chromosome 3 contained the most AdBBX members, with 6 AdBBXs. 16 AdBBX proteins had two distinct BBX domains, 11 members contained one CCT domain, and 7 genes had both BBX and CCT domains. Protein structure analysis revealed that AdBBX were classified into five clades: I (3 genes), II (4 genes), III (4 genes), IV (9 genes) and V (4 genes), on the basis of the diversity of conserved BBX and CCT domains. Moreover, 15 distinct motifs were found in these 24 AdBBX proteins and motif 1 and 5 existed in all the AdBBX proteins. Duplication analysis revealed that 4 interchromosomal duplicated gene pairs were obtained and all of them belonged to group IV. In addition, 95 kinds of cis-acting elements were found in the promoter regions of AdBBXs and 53 types were predicted to have putative functions. The numbers and types of cis-acting elements varied in these AdBBX promoters, as a result, AdBBX genes exhibited distinct expression levels in different tissues. The transcription investigation combined with synteny analysis suggested AdBBX8 might be the key factor involving in flowering time regulation in Arachis duranensis. Conclusion Overall, this study provides a genome-wide identification of BBX genes in a wild peanut Arachis duranensis. Characteristic and transcription pattern analysis revealed their critical roles in plant growth and development. Our study will provide essential information for further functional characteristic investigation of AdBBX genes.
Angiosperms represent one of the most spectacular terrestrial radiations on the planet1, but their early diversification and phylogenetic relationships remain uncertain2–5. A key reason for this impasse is the paucity of complete genomes representing early-diverging angiosperms. Here, we present high-quality, chromosomal-level genome assemblies of two aquatic species—prickly waterlily (Euryale ferox; Nymphaeales) and the rigid hornwort (Ceratophyllum demersum; Ceratophyllales)—and expand the genomic representation for key sectors of the angiosperm tree of life. We identify multiple independent polyploidization events in each of the five major clades (that is, Nymphaeales, magnoliids, monocots, Ceratophyllales and eudicots). Furthermore, our phylogenomic analyses, which spanned multiple datasets and diverse methods, confirm that Amborella and Nymphaeales are successively sister to all other angiosperms. Furthermore, these genomes help to elucidate relationships among the major subclades within Mesangiospermae, which contain about 350,000 species. In particular, the species-poor lineage Ceratophyllales is supported as sister to eudicots, and monocots and magnoliids are placed as successively sister to Ceratophyllales and eudicots. Finally, our analyses indicate that incomplete lineage sorting may account for the incongruent phylogenetic placement of magnoliids between nuclear and plastid genomes.
Summary Celery (Apium graveolens L. 2n = 2x = 22), a member of the Apiaceae family, is among the most important and globally grown vegetables. Here, we report a high‐quality genome sequence assembly, anchored to 11 chromosomes, with total length of 3.33 Gb and N50 scaffold length of 289.78 Mb. Most (92.91%) of the genome is composed of repetitive sequences, with 62.12% of 31 326 annotated genes confined to the terminal 20% of chromosomes. Simultaneous bursts of shared long‐terminal repeats (LTRs) in different Apiaceae plants suggest inter‐specific exchanges. Two ancestral polyploidizations were inferred, one shared by Apiales taxa and the other confined to Apiaceae. We reconstructed 8 Apiales proto‐chromosomes, inferring their evolutionary trajectories from the eudicot common ancestor to extant plants. Transcriptome sequencing in three tissues (roots, leaves and petioles), and varieties with different‐coloured petioles, revealed 4 and 2 key genes in pathways regulating anthocyanin and coumarin biosynthesis, respectively. A remarkable paucity of NBS disease‐resistant genes in celery (62) and other Apiales was explained by extensive loss and limited production of these genes during the last ~10 million years, raising questions about their biotic defence mechanisms and motivating research into effects of chemicals, for example coumarins, that give off distinctive odours. Celery genome sequencing and annotation facilitates further research into important gene functions and breeding, and comparative genomic analyses in Apiales.
The durian (Durio zibethinus) genome has recently become available, and analysis of this genome reveals two paleopolyploidization events previously inferred as shared with cotton (Gossypium spp.). Here, we reanalyzed the durian genome in comparison with other well-characterized genomes. We found that durian and cotton were actually affected by different polyploidization events: hexaploidization in durian ;19-21 million years ago (mya) and decaploidization in cotton ;13-14 mya. Previous interpretations of shared polyploidization events may have resulted from the elevated evolutionary rates in cotton genes due to the decaploidization and insufficient consideration of the complexity of plant genomes. The decaploidization elevated evolutionary rates of cotton genes by ;64% compared to durian and explained a previous ;4-fold over dating of the event. In contrast, the hexaploidization in durian did not prominently elevate gene evolutionary rates, likely due to its long generation time. Moreover, divergent evolutionary rates probably explain 98.4% of reconstructed phylogenetic trees of homologous genes being incongruent with expected topology. The findings provide further insight into the roles played by polypoidization in the evolution of genomes and genes, and they suggest revisiting existing reconstructed phylogenetic trees. and led the research. J.W. implemented and coordinated the analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.