Rho-associated protein kinase 1 (ROCK1), a member of the ROCK family, serves an important function in cell migration and invasion in neoplasms. ROCK1 has been found to be overexpressed in several types of cancers. However, the role of ROCK1 in non-small-cell lung cancer (NSCLC) is poorly understood. In the present study, ROCK1 was found to be overexpressed in NSCLC cells and tissues, and it was associated with poor survival of NSCLC patients. Subsequently, ROCK1 knockdown NSCLC cell lines were established using shRNA. ROCK1 knockdown significantly reduced the migration and invasion ability in the cell monolayer scratching and Transwell assays. ROCK1 knockdown was also found to markedly inhibit cell adhesion ability. Moreover, the phosphorylation of focal adhesion kinase (FAK) was inhibited by ROCK1 knockdown, reducing NSCLC cell migration and invasion ability. This mechanistic study revealed that ROCK1 significantly enhanced cell migration and invasion by inhibiting the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/FAK pathway. More importantly, the interruption of the PTEN/PI3K/FAK pathway markedly rescued the inhibition of cell migration and invasion mediated by ROCK1 knockdown. Taken together, these results suggest a novel role for ROCK1 in cell migration and invasion by inhibiting cell adhesion ability, and indicate that ROCK1 may be of value as a therapeutic target for the treatment of NSCLC.
The anti-infection ability and skin regeneration are important aspects on the progress of wound healing, which needs an ideal wound dressing that not only resists bacteria but also promotes skin regeneration. In this study, zinc oxide/silver/polyvinylpyrrolidone/polycaprolactone (ZnO/Ag/PVP/PCL) nanofibres were prepared through electrospinning. Firstly, zinc oxide nanoparticles (ZnONPs) and silver nanoparticle (AgNPs) were synthesized respectively. Secondly, the two nanoparticles were mixed with polyvinylpyrrolidone (PVP) and polycaprolactone (PCL) to obtain the nanofibres. The results of scanning electron microscopy (SEM) showed that ZnONPs and AgNPs were 40.07 ± 9.70 nm and 37.46 ± 12.02 nm, respectively. After electrospinning, the nanofibres were 368.22 ± 123.96 nm in diameter. Infrared spectroscopy revealed that ZnONPs/AgNPs bimetallic nanomaterials were physically embedded in the nanofibres. The antibacterial effects against Staphylococcus aureus and Escherichia coli of ZnO/Ag/PVP/PCL nanofibres were significantly better than these of the single metal material-loaded nanofibres. More importantly, the combination of ZnO and Ag reduced the cytotoxicity of ZnO/Ag/PVP/PCL bimetallic nanofibres toward fibroblasts. These findings demonstrated that ZnO/Ag/PVP/PCL bimetallic nanofibres should be of greater interest than the single metal nanomaterial-loaded nanofibres in inhibiting growth of bacteria.
Proliferation and metastasis are significantly malignant characteristics of human lung cancer, but the underlying molecular mechanisms are poorly understood. Chromobox 4 (CBX4), a member of the Polycomb group (PcG) family of epigenetic regulatory factors, enhances cellular proliferation and promotes cancer cell migration. However, the effect of CBX4 in the progression of lung cancer is not fully understood. We found that CBX4 is highly expressed in lung tumours compared with adjacent normal tissues. Overexpression of CBX4 significantly promotes cell proliferation and migration in human lung cancer cell lines. The knockdown of CBX4 obviously suppresses the cell growth and migration of human lung cancer cells in vitro. Also, the proliferation and metastasis in vivo are blocked by CBX4 knockdown. Furthermore, CBX4 knockdown effectively arrests cell cycle at the G0/G1 phase through suppressing the expression of CDK2 and Cyclin E and decreases the formation of filopodia through suppressing MMP2, MMP9 and CXCR4. Additionally, CBX4 promotes proliferation and metastasis via regulating the expression of BMI‐1 which is a significant regulator of proliferation and migration in lung cancer cells. Taken together, these data suggest that CBX4 is not only a novel prognostic marker but also may be a potential therapeutic target in lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.