Therapeutic outcome for the treatment of glioma was often limited due to drug resistance and low permeability of drug across the multiple physiological barriers, including the blood-brain barrier (BBB), and the blood-tumor barrier (BTB). In order to overcome these hurdles, we designed T7 and A7R dual peptides-modified liposomes (abbreviated as T7/A7R-LS) to efficiently co-delivery doxorubicin (DOX) and vincristine (VCR) to glioma in this study. T7 is a seven-peptide ligand of transferrin receptors (TfR) capable of circumventing the BBB and then targeting glioma. A7R is a d-peptide ligand of vascular endothelial growth factor receptor 2 (VEGFR 2) overexpressed on angiogenesis, presenting excellent glioma-homing property. By combining the dual-targeting delivery effect, the dual-modified liposomes displayed higher glioma localization than that of single ligand-modified liposomes or free drug. After loading with DOX and VCR, T7/A7R-LS showed the most favorable antiglioma effect in vivo. In conclusion, this dual-targeting, co-delivery strategy provides a potential method for improving brain drug delivery and antiglioma treatment efficacy.
An ideal brain-targeted nanocarrier must be sufficiently potent to penetrate the blood-brain barrier (BBB) and sufficiently competent to target the cells of interest with adequate optimized physiochemical features and biocompatibility. However, it is an enormous challenge to the researchers to organize the above-mentioned properties into a single nanocarrier particle. New frontiers in nanomedicine are advancing the research of new biomaterials. Herein, we demonstrate a straightforward strategy for brain targeting by encapsulating doxorubicin (DOX) into a naturally available and unmodified apoferritin nanocage (DOX-loaded APO). APO can specifically bind to cells expressing transferrin receptor 1 (TfR1). Because of the high expression of TfR1 in both brain endothelial and glioma cells, DOX-loaded APO can cross the BBB and deliver drugs to the glioma with TfR1. Subsequent research demonstrated that the DOX-loaded APO had good physicochemical properties (particle size of 12.03 ± 0.42 nm, drug encapsulation efficiency of 81.8 ± 1.1%) and significant penetrating and targeting effects in the coculture model of bEnd.3 and C6 cells in vitro. In vivo imaging revealed that DOX-loaded APO accumulated specifically in brain tumor tissues. Additionally, in vivo tumor therapy experiments (at a dosage of 1 mg/kg DOX) demonstrated that a longer survival period was observed in mice that had been treated with DOX-loaded APO (30 days) compared with mice receiving free DOX solution (19 days).
The cationic nature of cell penetrating peptides (CPPs) and their absence of cell selectivity restrains their applications in vivo. In this work, polymer nanoparticles (NPs) modified with photo- and pH-responsive polypeptides (PPPs) were successfully developed and respond to near-infrared (NIR) light illumination at the tumor site and a lowered tumor extracellular pH (pHe). In PPPs, the internalization function of CPPs (positively charged) is quenched by a pH-sensitive inhibitory peptide (negatively charged), which is linked via a photocleavable group. Small interfering RNA (siRNA) was loaded into NPs by a double-emulsion technique. In vivo experiments included siRNA loading, cellular uptake, cell apoptosis, siRNA transfection, tumor targeting delivery, and the in vivo antitumor efficacy. Results showed that the prepared PPP-NPs could selectively accumulate at the tumor sites and internalized into the tumor cells by the NIR light illumination and the lowered pHe at the tumor site. These studies demonstrated that PPP-NPs are a promising carrier for future tumor gene delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.