Pigs are considered as important hosts or “mixing vessels” for the generation of pandemic influenza viruses. Systematic surveillance of influenza viruses in pigs is essential for early warning and preparedness for the next potential pandemic. Here, we report on an influenza virus surveillance of pigs from 2011 to 2018 in China, and identify a recently emerged genotype 4 (G4) reassortant Eurasian avian-like (EA) H1N1 virus, which bears 2009 pandemic (pdm/09) and triple-reassortant (TR)-derived internal genes and has been predominant in swine populations since 2016. Similar to pdm/09 virus, G4 viruses bind to human-type receptors, produce much higher progeny virus in human airway epithelial cells, and show efficient infectivity and aerosol transmission in ferrets. Moreover, low antigenic cross-reactivity of human influenza vaccine strains with G4 reassortant EA H1N1 virus indicates that preexisting population immunity does not provide protection against G4 viruses. Further serological surveillance among occupational exposure population showed that 10.4% (35/338) of swine workers were positive for G4 EA H1N1 virus, especially for participants 18 y to 35 y old, who had 20.5% (9/44) seropositive rates, indicating that the predominant G4 EA H1N1 virus has acquired increased human infectivity. Such infectivity greatly enhances the opportunity for virus adaptation in humans and raises concerns for the possible generation of pandemic viruses.
Since the appearance of semiconductor solid-state lasers in the 1960s, [1] lasers have shown tremendous potential in various applications, such as data communication, medical treatment, environmental science, and military defense. Up to now, enormous research efforts have been conducted to develop high-quality semiconductor lasers. [2] Multiple-mode lasers suffer from false signaling, random fluctuation, and instability which hinder their practical applications. [3,4] Therefore, efforts to achieve single-mode lasers have drawn much attention due to the monochromaticity, high stability, controllable output wavelength, and great potential of these lasers in practical applications, such as in on-chip optical communication. [5] Thus far, most single-mode lasers have been realized in the following four ways: 1) decreasing the cavity size to enlarge the free spectral range (FSR); [6,7] 2) fabricating distributed Bragg reflector (DBR) mirror structures or distributed feedback (DFB) CsPbBr 3 shows great potential in laser applications due to its superior optoelectronic characteristics. The growth of CsPbBr 3 wire arrays with well-controlled sizes and locations is beneficial for cost-effective and largely scalable integration into on-chip devices. Besides, dynamic modulation of perovskite lasers is vital for practical applications. Here, monocrystalline CsPbBr 3 microwire (MW) arrays with tunable widths, lengths, and locations are successfully synthesized. These MWs could serve as high-quality whispering-gallery-mode lasers with high quality factors (>1500), low thresholds (<3 µJ cm −2 ), and long stability (>2 h). An increase of the width results in an increase of the laser quality and the resonant mode number. The dynamic modulation of lasing modes is achieved by a piezoelectric polarization-induced refractive index change. Single-mode lasing can be obtained by applying strain to CsPbBr 3 MWs with widths between 2.3 and 3.5 µm, and the mode positions can be modulated dynamically up to ≈9 nm by changing the applied strain. Piezoelectric-induced dynamic modulation of single-mode lasing is convenient and repeatable. This method opens new horizons in understanding and utilizing the piezoelectric properties of lead halide perovskites in lasing applications and shows potential in other applications, such as on-chip strain sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.