There is an urgent global need for a safe macrofilaricide drug to accelerate elimination of the neglected tropical diseases onchocerciasis and lymphatic filariasis. From an anti-infective compound library, the macrolide veterinary antibiotic, tylosin A, was identified as a hit against Wolbachia. This bacterial endosymbiont is required for filarial worm viability and fertility and is a validated target for macrofilaricidal drugs. Medicinal chemistry was undertaken to develop tylosin A analogs with improved oral bioavailability. Two analogs, A-1535469 and A-1574083, were selected. Their efficacy was tested against the gold-standard second-generation tetracycline antibiotics, doxycycline and minocycline, in mouse and gerbil infection models of lymphatic filariasis (Brugia malayi and Litomosoides sigmodontis) and onchocerciasis (Onchocerca ochengi). A 1- or 2-week course of oral A-1535469 or A-1574083 provided >90% Wolbachia depletion from nematodes in infected animals, resulting in a block in embryogenesis and depletion of microfilarial worm loads. The two analogs delivered comparative or superior efficacy compared to a 3- to 4-week course of doxycycline or minocycline. A-1574083 (now called ABBV-4083) was selected for further preclinical testing. Cardiovascular studies in dogs and toxicology studies in rats and dogs revealed no adverse effects at doses (50 mg/kg) that achieved plasma concentrations >10-fold above the efficacious concentration. A-1574083 (ABBV-4083) shows potential as an anti-Wolbachia macrolide with an efficacy, pharmacology, and safety profile that is compatible with a short-term oral drug course for treating lymphatic filariasis and onchocerciasis.
BackgroundImmunochromatographic card test (ICT) is a tool to map the distribution of Wuchereria bancrofti. In areas highly endemic for loaisis in DRC and Cameroon, a relationship has been envisaged between high L. loa microfilaria (Mf) loads and ICT positivity. However, similar associations have not been demonstrated from other areas with contrasting levels of L. loa endemicity. This study investigated the cross-reactivity of ICT when mapping lymphatic filariasis (LF) in areas with contrasting endemicity levels of loiasis and mansonellosis in Cameroon.Methodology/Principal FindingsA cross-sectional study to assess the prevalence and intensity of W. bancrofti, L. loa and M. perstans was carried out in 42 villages across three regions (East, North-west and South-west) of the Cameroon rainforest domain. Diurnal blood was collected from participants for the detection of circulating filarial antigen (CFA) by ICT and assessment of Mf using a thick blood smear. Clinical manifestations of LF were also assessed. ICT positives and patients clinically diagnosed with lymphoedema were further subjected to night blood collection for the detection of W. bancrofti Mf. Overall, 2190 individuals took part in the study. Overall, 24 individuals residing in 14 communities were tested positive by ICT, with prevalence rates ranging from 0% in the South-west to 2.1% in the North-west. Lymphoedema were diagnosed in 20 individuals with the majority of cases found in the North-west (11/20), and none of them were tested positive by ICT. No Mf of W. bancrofti were found in the night blood of any individual with a positive ICT result or clinical lymphoedema. Positive ICT results were strongly associated with high L. loa Mf intensity with 21 subjects having more than 8,000 L. loa Mf ml/blood (Odds ratio = 15.4; 95%CI: 6.1–39.0; p < 0.001). Similarly, a strong positive association (Spearman’s rho = 0.900; p = 0.037) was observed between the prevalence of L. loa and ICT positivity by area: a rate of 1% or more of positive ICT results was found only in areas with an L. loa Mf prevalence above 15%. In contrast, there was no association between ICT positivity and M. perstans prevalence (Spearman’s rho = - 0.200; p = 0.747) and Mf density (Odds ratio = 1.8; 95%CI: 0.8–4.2; p = 0.192).Conclusions/SignificanceThis study has confirmed the strong association between the ICT positivity and L. loa intensity (Mf/ml of blood) at the individual level. Furthermore, the study has demonstrated that ICT positivity is strongly associated with high L. loa prevalence. These results suggest that the main confounding factor for positive ICT test card results are high levels of L. loa. The findings may indicate that W. bancrofti is much less prevalent in the Central African region where L. loa is highly endemic than previously assumed and accurate re-mapping of the region would be very useful for shrinking of the map of LF distribution.
Elimination of the helminth disease, river blindness, remains challenging due to ivermectin treatment-associated adverse reactions in loiasis co-infected patients. Here, we address a deficit in preclinical research tools for filarial translational research by developing Loa loa mouse infection models. We demonstrate that adult Loa loa worms in subcutaneous tissues, circulating microfilariae (mf) and presence of filarial biomarkers in sera occur following experimental infections of lymphopenic mice deficient in interleukin (IL)-2/7 gamma-chain signaling. A microfilaraemic infection model is also achievable, utilizing immune-competent or -deficient mice infused with purified Loa mf. Ivermectin but not benzimidazole treatments induce rapid decline (>90%) in parasitaemias in microfilaraemic mice. We identify up-regulation of inflammatory markers associated with allergic type-2 immune responses and eosinophilia post-ivermectin treatment. Thus, we provide validation of murine research models to identify loiasis biomarkers, to counter-screen candidate river blindness cures and to interrogate the inflammatory etiology of loiasis ivermectin-associated adverse reactions.
Parasitic filarial nematodes cause debilitating infections in people in resource-limited countries. A clinically validated approach to eliminating worms uses a 4- to 6-week course of doxycycline that targets Wolbachia, a bacterial endosymbiont required for worm viability and reproduction. However, the prolonged length of therapy and contraindication in children and pregnant women have slowed adoption of this treatment. Here, we describe discovery and optimization of quinazolines CBR417 and CBR490 that, with a single dose, achieve >99% elimination of Wolbachia in the in vivo Litomosoides sigmodontis filarial infection model. The efficacious quinazoline series was identified by pairing a primary cell-based high-content imaging screen with an orthogonal ex vivo validation assay to rapidly quantify Wolbachia elimination in Brugia pahangi filarial ovaries. We screened 300,368 small molecules in the primary assay and identified 288 potent and selective hits. Of 134 primary hits tested, only 23.9% were active in the worm-based validation assay, 8 of which contained a quinazoline heterocycle core. Medicinal chemistry optimization generated quinazolines with excellent pharmacokinetic profiles in mice. Potent antiwolbachial activity was confirmed in L. sigmodontis, Brugia malayi, and Onchocerca ochengi in vivo preclinical models of filarial disease and in vitro selectivity against Loa loa (a safety concern in endemic areas). The favorable efficacy and in vitro safety profiles of CBR490 and CBR417 further support these as clinical candidates for treatment of filarial infections.
BackgroundThe immunochromatographic test (ICT) for lymphatic filariasis is a serological test designed for unequivocal detection of circulating Wuchereria bancrofti antigen. It was validated and promoted by WHO as the primary diagnostic tool for mapping and impact monitoring for disease elimination following interventions. The initial tests for specificity and sensitivity were based on samples collected in areas free of loiasis and the results suggested a near 100 % specificity for W. bancrofti. The possibility of cross-reactivity with non-Wuchereria bancrofti antigens was not investigated until recently, when false positive results were observed in three independent studies carried out in Central Africa. Associations were demonstrated between ICT positivity and Loa loa microfilaraemia, but it was not clearly established if these false positive results were due to L. loa or can be extended to other filarial nematodes. This study brought further evidences of the cross-reactivity of ICT card with L. loa and Onchocerca ochengi (related to O. volvulus parasite) using in vivo and in vitro systems.MethodsTwo filarial/host experimental systems (L. loa-baboon and O. ochengi-cattle) and the in vitro maintenance of different stages (microfilariae, infective larvae and adult worm) of the two filariae were used in three experiments per filarial species. First, whole blood and sera samples were prepared from venous blood of patent baboons and cattle, and applied on ICT cards to detect circulating filarial antigens. Secondly, larval stages of L. loa and O. ochengi as well as O. ochengi adult males were maintained in vitro. Culture supernatants were collected and applied on ICT cards after 6, 12 and 24 h of in vitro maintenance. Finally, total worm extracts (TWE) were prepared using L. loa microfilariae (Mf) and O. ochengi microfilariae, infective larvae and adult male worms. TWE were also tested on ICT cards. For each experiment, control assays (whole blood and sera from uninfected babon/cattle, culture medium and extraction buffer) were performed.ResultsPositive ICT results were obtained with whole blood and sera of L. loa microfilaremic baboons, culture supernatants of L. loa Mf and infective larvae as well as with L. loa Mf protein extracts. In contrast, negative ICT results were observed with whole blood and sera from the O. ochengi-cattle system. Surprisingly, culture supernatant of O. ochengi adult males and total worm extracts (Mf, infective larvae and adult worm) were positive to the test.ConclusionsThis study has provided further evidence of L. loa cross-reactivity for the ICT card. All stages of L. loa seem capable of inducing the cross-reactivity. Onchocerca ochengi. can also induce cross-reactivity in vitro, but this is less likely in vivo due to the location of parasite. The availability of the parasite proteins in the blood stream determines the magnitude of the cross-reactivity. The cross-reactivity of the ICT card to these non-W. bancrofti filariae poses some doubts to the reliability and validity of the curren...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.