There is an increase of pathogenic multidrug-resistant bacteria globally due to the misuse of antibiotics. Recently, more scientists used metal nanoparticles to counteract antibacterial resistance. In this study, orange peel waste (OPW) was used for selenium nanoparticles’ (Se-NPs) biosynthesis through the green and ecofriendly method, and their applications as antibacterial and antibiofilm agents. Green biosynthesized Se-NPs were characterized using FTIR, XRD, SEM, EDAX, and TEM. Characterization results revealed that biosynthesized Se-NPs were highly crystalline, spherical, and polydisperse, and had sizes in the range of 16–95 nm. The biosynthesized Se-NPs were evaluated as antibacterial and antibiofilm activities against multidrug-resistant bacteria. Results illustrated that Se-NPs exhibited potential antibacterial activity against Gram-positive bacteria (S. aureus ATCC 29213 and biofilm-producing clinical isolates of S. aureus) and Gram-negative bacteria (Pseudomonas aeruginosa PAO1, MDR, biofilm, and quorum-sensing and producing clinical isolates of MDR P. aeruginosa, MDR E. coli, and K. pneumonia). Moreover, results illustrated that S. aureus ATCC 29213 was the most sensitive bacteria to Se-NPs at 1000 µg/mL, where the inhibition zone was 35 mm and MIC was 25 µg/mL. Furthermore, Se-NPs at 0.25 and 0.5 MIC decreased the biofilm significantly. The largest inhibition of biofilm was noticed in MDR K. pneumonia, which was 62% and 92% at 0.25 and 0.5 MIC, respectively. In conclusion, Se-NPs were successfully biosynthesized using OPW through the green method and had promising antibacterial and antibiofilm activity against multidrug-resistant bacteria, which can be used later in fighting resistant bacteria.
The purpose of this study is to create chitosan-stabilized silver nanoparticles (Chi/Ag-NPs) and determine whether they were cytotoxic and also to determine their characteristic antibacterial, antibiofilm, and wound healing activities. Recently, the development of an efficient and environmentally friendly method for synthesizing metal nanoparticles based on polysaccharides has attracted a lot of interest in the field of nanotechnology. Colloidal Chi/Ag-NPs are prepared by chemical reduction of silver ions in the presence of Chi, giving Chi/Ag-NPs. Physiochemical properties are determined by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) analyses. TEM pictures indicate that the generated Chi/Ag-NPs are nearly spherical in shape with a thin chitosan covering around the Ag core and had sizes in the range of 9–65 nm. In vitro antibacterial activity was evaluated against Staphylococcus aureus and Pseudomonas aeruginosa by a resazurin-mediated microtiter plate assay. The highest activity was observed with the lowest concentration of Chi/Ag-NPs, which was 12.5 µg/mL for both bacterial strains. Additionally, Chi/Ag-NPs showed promising antifungal features against Candida albicans, Aspergillus fumigatus, Aspergillus terreus, and Aspergillus niger, where inhibition zones were 22, 29, 20, and 17 mm, respectively. Likewise, Chi/Ag-NPs revealed potential antioxidant activity is 92, 90, and 75% at concentrations of 4000, 2000, and 1000 µg/mL, where the IC50 of Chi/Ag-NPs was 261 µg/mL. Wound healing results illustrated that fibroblasts advanced toward the opening to close the scratch wound by roughly 50.5% after a 24-h exposure to Chi/Ag-NPs, greatly accelerating the wound healing process. In conclusion, a nanocomposite based on AgNPs and chitosan was successfully prepared and exhibited antibacterial, antibiofilm, antifungal, antioxidant, and wound healing activities that can be used in the medical field.
Currently, nanoparticles and nanomaterials are widely used for biomedical applications. In the present study, silver nanoparticles (AgNPs) were successfully biosynthesized using a cell-free extract (CFE) of Bacillus thuringiensis MAE 6 through a green and ecofriendly method. The size of the biosynthesized AgNPs was 32.7 nm, and their crystalline nature was confirmed by XRD, according to characterization results. A surface plasmon resonance spectrum of AgNPs was obtained at 420 nm. Nanoparticles were further characterized using DLS and FTIR analyses, which provided information on their size, stability, and functional groups. AgNPs revealed less cytotoxicity against normal Vero cell line [IC50 = 155 μg/mL]. Moreover, the biosynthesized AgNPs exhibited promising antifungal activity against four most common Aspergillus, including Aspergillus niger, A. terreus, A. flavus, and A. fumigatus at concentrations of 500 μg/mL where inhibition zones were 16, 20, 26, and 19 mm, respectively. In addition, MICs of AgNPs against A. niger, A. terreus, A. flavus, and A. fumigatus were 125, 62.5, 15.62, and 62.5 μg/mL, respectively. Furthermore, the ultrastructural study confirmed the antifungal effect of AgNPs, where the cell wall’s integrity and homogeneity were lost; the cell membrane had separated from the cell wall and had intruded into the cytoplasm. In conclusion, the biosynthesized AgNPs using a CFE of B. thuringiensis can be used as a promising antifungal agent against Aspergillus species causing Aspergillosis.
Nanoparticles (NPs) and nanomaterials (NMs) are now widely used in a variety of applications, including medicine, solar energy, drug delivery, water treatment, and pollution detection. Hematite (α-Fe2O3) nanoparticles (Hem-NPs) were manufactured in this work by utilizing a cost-effective and ecofriendly approach that included a biomass filtrate of A. niger AH1 as a bio-reducer. The structural and optical properties of Hem-NPs were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV-visible and Fourier-transform infrared (FTIR) spectroscopies. The results revealed that all of the studied parameters, as well as their interactions, had a significant impact on the crystallite size. The average diameter size of the biosynthesized Hem-NPs ranged between 60 and 80 nm. The antimicrobial and photocatalytic activities of Hem-NPs were investigated. The antimicrobial results of Hem-NPs revealed that Hem-NPs exhibited antibacterial activity against E. coli, B. subtilis, and S. mutans with MICs of 125, 31.25, and 15.62 µg/mL, respectively. Moreover, Hem-NPs exhibited antifungal activity against C. albicans and A. fumigatus, where the MICs were 2000 and 62.5 µg/mL, respectively. The efficiency of biosynthesized Hem-NPs was determined for the rapid biodegradation of crystal violet (CV) dye, reaching up to 97 percent after 150 min. Furthermore, Hem-NPs were successfully used more than once for biodegradation and that was regarded as its efficacy. In conclusion, Hem-NPs were successfully biosynthesized using A. niger AH1 and demonstrated both antimicrobial activity and photocatalytic activity against CV dye.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.