The Internet of Things (IoT) is one of the most widely used technologies today, and it has a significant effect on our lives in a variety of ways, including social, commercial, and economic aspects. In terms of automation, productivity, and comfort for consumers across a wide range of application areas, from education to smart cities, the present and future IoT technologies hold great promise for improving the overall quality of human life. However, cyber-attacks and threats greatly affect smart applications in the environment of IoT. The traditional IoT security techniques are insufficient with the recent security challenges considering the advanced booming of different kinds of attacks and threats. Utilizing artificial intelligence (AI) expertise, especially machine and deep learning solutions, is the key to delivering a dynamically enhanced and up-todate security system for the next-generation IoT system. Throughout this article, we present a comprehensive picture on IoT security intelligence, which is built on machine and deep learning technologies that extract insights from raw data to intelligently protect IoT devices against a variety of cyber-attacks. Finally, based on our study, we highlight the associated research issues and future directions within the scope of our study. Overall, this article aspires to serve as a reference point and guide, particularly from a technical standpoint, for
The cryptography employed against user files makes the effect of crypto-ransomware attacks irreversible even after detection and removal. Thus, detecting such attacks early, i.e. during pre-encryption phase before the encryption takes place is necessary. Existing crypto-ransomware early detection solutions use a fixed time-based thresholding approach to determine the pre-encryption phase boundaries. However, the fixed time thresholding approach implies that all samples start the encryption at the same time. Such assumption does not necessarily hold for all samples as the time for the main sabotage to start varies among different cryptoransomware families due to the obfuscation techniques employed by the malware to change its attack strategies and evade detection, which generates different attack behaviors. Additionally, the lack of sufficient data at the early phases of the attack adversely affects the ability of feature extraction techniques in early detection models to perceive the characteristics of the attacks, which, consequently, decreases the detection accuracy. Therefore, this paper proposes a Dynamic Pre-encryption Boundary Delineation and Feature Extraction (DPBD-FE) scheme that determines the boundary of the pre-encryption phase, from which the features are extracted and selected more accurately. Unlike the fixed thresholding employed by the extant works, DPBD-FE tracks the pre-encryption phase for each instance individually based on the first occurrence of any cryptography-related APIs. Then, an annotated Term Frequency-Inverse Document Frequency (aTF-IDF) technique was utilized to extract the features from runtime data generated during the pre-encryption phase of crypto-ransomware attacks. The aTF-IDF overcomes the challenge of insufficient attack patterns during the early phases of the attack lifecycle. The experimental evaluation shows that DPBD-FE was able to determine the pre-encryption boundaries and extract the features related to this phase more accurately compared to related works.
Recently, fake news has been widely spread through the Internet due to the increased use of social media for communication. Fake news has become a significant concern due to its harmful impact on individual attitudes and the community’s behavior. Researchers and social media service providers have commonly utilized artificial intelligence techniques in the recent few years to rein in fake news propagation. However, fake news detection is challenging due to the use of political language and the high linguistic similarities between real and fake news. In addition, most news sentences are short, therefore finding valuable representative features that machine learning classifiers can use to distinguish between fake and authentic news is difficult because both false and legitimate news have comparable language traits. Existing fake news solutions suffer from low detection performance due to improper representation and model design. This study aims at improving the detection accuracy by proposing a deep ensemble fake news detection model using the sequential deep learning technique. The proposed model was constructed in three phases. In the first phase, features were extracted from news contents, preprocessed using natural language processing techniques, enriched using n-gram, and represented using the term frequency–inverse term frequency technique. In the second phase, an ensemble model based on deep learning was constructed as follows. Multiple binary classifiers were trained using sequential deep learning networks to extract the representative hidden features that could accurately classify news types. In the third phase, a multi-class classifier was constructed based on multilayer perceptron (MLP) and trained using the features extracted from the aggregated outputs of the deep learning-based binary classifiers for final classification. The two popular and well-known datasets (LIAR and ISOT) were used with different classifiers to benchmark the proposed model. Compared with the state-of-the-art models, which use deep contextualized representation with convolutional neural network (CNN), the proposed model shows significant improvements (2.41%) in the overall performance in terms of the F1score for the LIAR dataset, which is more challenging than other datasets. Meanwhile, the proposed model achieves 100% accuracy with ISOT. The study demonstrates that traditional features extracted from news content with proper model design outperform the existing models that were constructed based on text embedding techniques.
In Alzheimer’s disease (AD) progression, it is imperative to identify the subjects with mild cognitive impairment before clinical symptoms of AD appear. This work proposes a technique for decision support in identifying subjects who will show transition from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) in the future. We used robust predictors from multivariate MRI-derived biomarkers and neuropsychological measures and tracked their longitudinal trajectories to predict signs of AD in the MCI population. Assuming piecewise linear progression of the disease, we designed a novel weighted gradient offset-based technique to forecast the future marker value using readings from at least two previous follow-up visits. Later, the complete predictor trajectories are used as features for a standard support vector machine classifier to identify MCI-to-AD progressors amongst the MCI patients enrolled in the Alzheimer’s disease neuroimaging initiative (ADNI) cohort. We explored the performance of both unimodal and multimodal models in a 5-fold cross-validation setup. The proposed technique resulted in a high classification AUC of 91.2% and 95.7% for 6-month- and 1-year-ahead AD prediction, respectively, using multimodal markers. In the end, we discuss the efficacy of MRI markers as compared to NM for MCI-to-AD conversion prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.