Using data for 25,780 species categorized on the International Union for Conservation of Nature Red List, we present an assessment of the status of the world’s vertebrates. One-fifth of species are classified as Threatened, and we show that this figure is increasing: On average, 52 species of mammals, birds, and amphibians move one category closer to extinction each year. However, this overall pattern conceals the impact of conservation successes, and we show that the rate of deterioration would have been at least one-fifth again as much in the absence of these. Nonetheless, current conservation efforts remain insufficient to offset the main drivers of biodiversity loss in these groups: agricultural expansion, logging, overexploitation, and invasive alien species
We surveyed the population status of the Neotropical toad genus Atelopus, and document recent catastrophic declines that are more severe than previously reported for any amphibian genus. Of 113 species that have been described or are candidates for description, data indicate that in 42 species, population sizes have been reduced by at least half and only ten species have stable populations. The status of the remaining taxa is unknown. At least 30 species have been missing from all known localities for at least 8 yr and are feared extinct. Most of these species were last seen between 1984 and 1996. All species restricted to elevations of above 1000 m have declined and 75 percent have disappeared, while 58 percent of lowland species have declined and 38 percent have disappeared. Habitat loss was not related to declines once we controlled for the effects of elevation. In fact, 22 species that occur in protected areas have disappeared. The fungal disease Batrachochytrium dendrobatidis has been documented from nine species that have declined, and may explain declines in higher elevation species that occur in undisturbed habitats. Climate change may also play a role, but other potential factors such as environmental contamination, trade, and introduced species are unlikely to have affected more than a handful of species. Widespread declines and extinctions in Atelopus may reflect population changes in other Neotropical amphibians that are more difficult to survey, and the loss of this trophic group may have cascading effects on other species in tropical ecosystems. RESUMENExaminamos el estado poblacional de las ranas neotropicales del género Atelopus y documentamos disminuciones catastróficas recientes, las más drásticas señaladas para cualquier género de anfibios. De las 113 especies que han sido descritas o son candidatas para ser descritas, los datos poblacionales indican que en 42 especies, las poblaciones han sido reducidas por lo menos a la mitad y solamente diez especies tienen poblaciones estables. El estado de los taxa restantes es desconocido. Por lo menos 30 especies no han sido vistas en al menos ocho años de todas las localidades conocidas, y se teme que se hayan extinguido La mayoría de estas especies desaparecieron entre 1984 y 1996. Todas las especies con SPECIAL SECTION Declines and Extinctions of Atelopus 191rangos altitudinales de 1000 m o superiores han sufrido disminuciones poblacionales, el 75 por ciento de estas ha desaparecido del todo. El 58 por ciento de las especies de bajura han sufrido disminuciones, mientras que el 38 por ciento ha desaparecido del todo. La pérdida de hábitat, no fue relacionada con las disminuciones una vez que se controló el efecto de altura en los análisis. De hecho, unas 22 especies que tienen poblaciones dentro deáreas protegidas han desaparecido. El hongo quítrido Batrachochytrium dendrobatidis estuvo presente en nueve especies que han experimentado disminuciones y puede explicar desapariciones en especies que ocupan hábitats no perturbados a mayores elevac...
Amphibians stand at the forefront of a global biodiversity crisis. More than one-third of amphibian species are globally threatened, and over 120 species have likely suffered global extinction since 1980. Most alarmingly, many rapid declines and extinctions are occurring in pristine sites lacking obvious adverse effects of human activities. The causes of these ''enigmatic'' declines remain highly contested. Still, lack of long-term data on amphibian populations severely limits our understanding of the distribution of amphibian declines, and therefore the ultimate causes of these declines. Here, we identify a systematic community-wide decline in populations of terrestrial amphibians at La Selva Biological Station, a protected old-growth lowland rainforest in lower Central America. We use data collected over 35 years to show that population density of all species of terrestrial amphibians has declined by Ϸ75% since 1970, and we show identical trends for all species of common reptiles. The trends we identify are neither consistent with recent emergence of chytridiomycosis nor the climate-linked epidemic hypothesis, two leading putative causes of enigmatic amphibian declines. Instead, our data suggest that declines are due to climate-driven reductions in the quantity of standing leaf litter, a critical microhabitat for amphibians and reptiles in this assemblage. Our results raise further concerns about the global persistence of amphibian populations by identifying widespread declines in species and habitats that are not currently recognized as susceptible to such risks.conservation ͉ long-term studies ͉ tropical wet forest
Aim We use novel data on the occurrence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in Costa Rica to model its potential distribution in that country. Location Lowland and montane areas of Costa Rica. Methods We use published and new data on the presence of B. dendrobatidis on 647 amphibians (35 species). Screening was performed through histological techniques by which 156 sites were surveyed. Of these, 21 were found to have the amphibian chytrid. Maxent, a presence‐only distribution modelling technique, was used to create 100 predictions of B. dendrobatidis occurrence, of which the most accurate 10 (based on area under the receiver‐operating characteristic curve) were chosen to create a composite distribution model. This approach increased confidence in model predictions, distinguishing areas of high probability of occurrence and low variability across model runs (higher confidence) from those with high probability but high variability (lower confidence). Results Predicted distribution patterns were not uniform along Costa Rica's mountains, where most amphibian declines have occurred. The pathogen was predicted to occur with greater probability on the Caribbean slopes than on the Pacific slopes. While high temperature seems to constrain the distribution of the pathogen, areas that also have small amounts of rainfall during the driest period of the year were predicted to have low probability of B. dendrobatidis occurrence. Main conclusions The model predicts that the Santa Elena Peninsula and the Central Valley have low probabilities of B. dendrobatidis occurrence, suggesting that they could function as refuges for amphibians. In such refugial areas, one could expect B. dendrobatidis to be absent, or to be present in low abundance (rendering an epidemic outbreak of chytridiomycosis unlikely). Craugastor ranoides, which belongs to a group of frogs particularly sensitive to chytridiomycosis outbreaks, persists in the hot and seasonally dry Santa Elena Peninsula but disappeared in the nearby colder and more humid Guanacaste Volcanic Chain. This information suggests that climatic refuges, where environmental conditions prevent disease outbreaks, could be an important component in amphibian conservation.
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.