IMPORTANCEThere is no specific antiviral therapy recommended for coronavirus disease 2019 . In vitro studies indicate that the antiviral effect of chloroquine diphosphate (CQ) requires a high concentration of the drug. OBJECTIVE To evaluate the safety and efficacy of 2 CQ dosages in patients with severe COVID-19. DESIGN, SETTING, AND PARTICIPANTSThis parallel, double-masked, randomized, phase IIb clinical trial with 81 adult patients who were hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was conducted from March 23 to April 5, 2020, at a tertiary care facility in Manaus, Brazilian Amazon. INTERVENTIONS Patients were allocated to receive high-dosage CQ (ie, 600 mg CQ twice daily for 10 days) or low-dosage CQ (ie, 450 mg twice daily on day 1 and once daily for 4 days). MAIN OUTCOMES AND MEASURES Primary outcome was reduction in lethality by at least 50% in the high-dosage group compared with the low-dosage group. Data presented here refer primarily to safety and lethality outcomes during treatment on day 13. Secondary end points included participant clinical status, laboratory examinations, and electrocardiogram results. Outcomes will be presented to day 28. Viral respiratory secretion RNA detection was performed on days 0 and 4. RESULTS Out of a predefined sample size of 440 patients, 81 were enrolled (41 [50.6%] to highdosage group and 40 [49.4%] to low-dosage group). Enrolled patients had a mean (SD) age of 51.1 (13.9) years, and most (60 [75.3%]) were men. Older age (mean [SD] age, 54.7 [13.7] years vs 47.4 [13.3] years) and more heart disease (5 of 28 [17.9%] vs 0) were seen in the high-dose group. Viral RNA was detected in 31 of 40 (77.5%) and 31 of 41 (75.6%) patients in the low-dosage and highdosage groups, respectively. Lethality until day 13 was 39.0% in the high-dosage group (16 of 41) and 15.0% in the low-dosage group (6 of 40). The high-dosage group presented more instance of QTc interval greater than 500 milliseconds (7 of 37 [18.9%]) compared with the low-dosage group (4 of 36 [11.1%]). Respiratory secretion at day 4 was negative in only 6 of 27 patients (22.2%). CONCLUSIONS AND RELEVANCEThe preliminary findings of this study suggest that the higher CQ dosage should not be recommended for critically ill patients with COVID-19 because of its potential (continued) Key Points Question How safe and effective are 2 different regimens of chloroquine diphosphate in the treatment of severe coronavirus disease 2019 (COVID-19)? Findings In this phase IIb randomized clinical trial of 81 patients with COVID-19, an unplanned interim analysis recommended by an independent data safety and monitoring board found that a higher dosage of chloroquine diphosphate for 10 days was associated with more toxic effects and lethality, particularly affecting QTc interval prolongation. The limited sample size did not allow the study to show any benefit overall regarding treatment efficacy. Meaning The preliminary findings from the CloroCovid-19 trial suggest that higher dosage of chloro...
On the 24 th November 2021 the sequence of a new SARS CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titres of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic as well as Alpha, Beta, Gamma, Delta are substantially reduced or fail to neutralize. Titres against Omicron are boosted by third vaccine doses and are high in cases both vaccinated and infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of a large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses, combining mutations conferring tight binding to ACE2 to unleash evolution driven by immune escape, leading to a large number of mutations in the ACE2 binding site which rebalance receptor affinity to that of early pandemic viruses.
Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations: P.1 from Brazil, B.1.351 from South Africa and B.1.1.7 from the UK (12, 10 and 9 changes in the spike respectively). All have mutations in the ACE2 binding site with P.1 and B.1.351 having a virtually identical triplet: E484K, K417N/T and N501Y, which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine induced antibody responses than B.1.351 suggesting that changes outside the RBD impact neutralisation. Monoclonal antibody 222 neutralises all three variants despite interacting with two of the ACE2 binding site mutations, we explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.
SARS-CoV-2 has undergone progressive change with variants conferring advantage rapidly becoming dominant lineages e.g. B.1.617. With apparent increased transmissibility variant B.1.617.2 has contributed to the current wave of infection ravaging the Indian subcontinent and has been designated a variant of concern in the UK. Here we study the ability of monoclonal antibodies, convalescent and vaccine sera to neutralize B.1.617.1 and B.1.617.2 and complement this with structural analyses of Fab/RBD complexes and map the antigenic space of current variants. Neutralization of both viruses is reduced when compared with ancestral Wuhan related strains but there is no evidence of widespread antibody escape as seen with B.1.351. However, B.1.351 and P.1 sera showed markedly more reduction in neutralization of B.1.617.2 suggesting that individuals previously infected by these variants may be more susceptible to reinfection by B.1.617.2. This observation provides important new insight for immunisation policy with future variant vaccines in non-immune populations.
Background Steroid use for COVID-19 is based on the possible role of these drugs in mitigating the inflammatory response, mainly in the lungs, triggered by SARS-CoV-2. This study aimed at evaluating at evaluating the efficacy of methylprednisolone (MP) among hospitalized patients with suspected COVID-19. Methods Parallel, double-blind, placebo-controlled, randomized, phase IIb clinical trial was performed with hospitalized patients aged ≥ 18 years with clinical, epidemiological and/or radiological suspected COVID-19, at a tertiary care facility in Manaus, Brazil. Patients were randomly allocated (1:1 ratio) to receive either intravenous MP (0.5 mg/kg) or placebo (saline solution), twice daily, for 5 days. A modified intention-to-treat (mITT) analysis was conducted. The primary outcome was 28-day mortality. ClinicalTrials Identifier NCT04343729. Findings From April 18 to June 16, 2020, 647 patients were screened, 416 randomized, and 393 analyzed as mITT, MP in 194 and placebo in 199 individuals. SARS-CoV-2 infection was confirmed by RT-PCR in 81.3%. Mortality at day 28 was not different between groups. A subgroup analysis showed that patients over 60 years in the MP group had a lower mortality rate at day 28. Patients in the MP arm tended to need more insulin therapy, and no difference was seen in virus clearance in respiratory secretion until day 7. Conclusion The findings of this study suggest that a short course of MP in hospitalized patients with COVID-19 did not reduce mortality in the overall population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.