Silencing of the BRCA1 gene by promoter hypermethylation occurs in primary breast and ovarian carcinomas, especially in the presence of LOH and in specific histopathologic subgroups. These findings support a role for this tumor suppressor gene in sporadic breast and ovarian tumorigenesis.
Expression of Snail1 in epithelial cells triggers an epithelial-mesenchymal transition (EMT). Here, we demonstrate that the synthesis of Zeb2, a transcriptional repressor of E-cadherin, is up-regulated after Snail1-induced EMT. Snail1 does not affect the synthesis of Zeb2 mRNA, but prevents the processing of a large intron located in its 5-untranslated region (UTR). This intron contains an internal ribosome entry site (IRES) necessary for the expression of Zeb2. Maintenance of 5-UTR Zeb2 intron is dependent on the expression of a natural antisense transcript (NAT) that overlaps the 5 splice site in the intron. Ectopic overexpression of this NAT in epithelial cells prevents splicing of the Zeb2 5-UTR, increases the levels of Zeb2 protein, and consequently down-regulates E-cadherin mRNA and protein. The relevance of these results is demonstrated by the strong association between NAT presence and conservation of the 5-UTR intron in cells that have undergone EMT or in human tumors with low E-cadherin expression. Therefore, the results presented in this article reveal the existence of a NAT capable of activating Zeb2 expression, explain the mechanism involved in this activation, and demonstrate that this NAT regulates E-cadherin expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.