Aim
Understanding the variation in community composition and species abundances (i.e., β‐diversity) is at the heart of community ecology. A common approach to examine β‐diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments.
Location
Global.
Time period
1990 to present.
Major taxa studied
From diatoms to mammals.
Method
We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features.
Results
Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid‐latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances.
Main conclusions
In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal‐related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost‐effective option for investigating community changes in heterogeneous environments.
Patterns in community composition are scale‐dependent and generally difficult to distinguish. Therefore, quantifying the main assembly processes in various systems and across different datasets has remained challenging. Building on the PER‐SIMPER method, we propose a new metric, the dispersal–niche continuum index (DNCI), which estimates whether dispersal or niche processes dominate community assembly and facilitates the comparisons of processes among datasets. The DNCI was tested for robustness using simulations and applied to observational datasets comprising organismal groups with different trophic level and dispersal potential. Based on the robustness tests, the DNCI discriminated the respective contribution of niche and dispersal processes in pairwise comparisons of site groups with less than 40% and 30% differences in their taxa and site numbers, respectively. In the observational datasets, the DNCI suggested that dispersal rather than niche assembly was the dominant assembly process which, however, varied in intensity among organismal groups and study contexts, including spatial scale and ecosystem types. The proposed DNCI measures the relative strength of community assembly processes in a way that is simple, easily quantifiable and comparable across datasets. We discuss the strengths and weaknesses of the DNCI and provide perspectives for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.