the earth's surface dynamics provide essential information for guiding environmental and agricultural policies. Uncovered and unprotected surfaces experience several undesirable effects, which can affect soil ecosystem functions. We developed a technique to identify global bare surface areas and their dynamics based on multitemporal remote sensing images to aid the spatiotemporal evaluation of anthropic and natural phenomena. The bare Earth's surface and its changes were recognized by Landsat image processing over a time range of 30 years using the Google Earth Engine platform. Two additional products were obtained with a similar technique: a) Earth's bare surface frequency, which represents where and how many times a single pixel was detected as bare surface, based on Landsat series, and b) Earth's bare soil tendency, which represents the tendency of bare surface to increase or decrease. This technique enabled the retrieval of bare surfaces on 32% of Earth's total land area and on 95% of land when considering only agricultural areas. From a multitemporal perspective, the technique found a 2.8% increase in bare surfaces during the period on a global scale. However, the rate of soil exposure decreased by ~4.8% in the same period. The increase in bare surfaces shows that agricultural areas are increasing worldwide. The decreasing rate of soil exposure indicates that, unlike popular opinion, more soils have been covered due to the adoption of conservation agriculture practices, which may reduce soil degradation. Soils are directly related to global issues, such as food supply, water security and climate regulation 1-4. Considering that soil health is easily disturbed by modifications of physical, chemical and biological conditions, soil management must be carefully delineated and constantly monitored 5. The high occurrence of bare surfaces in agricultural areas may increase soil degradation, influencing soil health and affecting important ecosystem functions 6. Surface exposure triggers a sequence of events, which may result in soil erosion 7 , contamination 8 , desertification 9 , salinization 10 , acidification 11 , compaction 12 , biodiversity loss 13 , nutrient depletion 14 , and loss of soil organic carbon (SOC) 15. Despite the need to preserve soil ecosystems for future generations, we will still need to feed 9.7 billion people by the middle of this century 16. To date, the total area of worldwide crop and pasture lands is estimated at 49 million km 2 , which represents approximately 30% of the total global land area 17. The world's future demand for water, energy and food is closely related to the intensification of agriculture and the preservation of ecosystems. Sustainable land use requires data-driven policymaking and management strategies, which are currently hampered by the high cost and time-consuming characteristics of soil data acquisition 2. The remote sensing (RS) technique is an indispensable tool for multitemporal and spatial data acquisition, as it enables the collection of soil information at gl...
Terrain analysis is an important tool for modeling environmental systems. Aiming to use the cloud-based computing capabilities of Google Earth Engine (GEE), we customized an algorithm for calculating terrain attributes, such as slope, aspect, and curvatures, for different resolution and geographical extents. The calculation method is based on geometry and elevation values estimated within a 3 × 3 spheroidal window, and it does not rely on projected elevation data. Thus, partial derivatives of terrain are calculated considering the great circle distances of reference nodes of the topographic surface. The algorithm was developed using the JavaScript programming interface of the online code editor of GEE and can be loaded as a custom package. The algorithm also provides an additional feature for making the visualization of terrain maps with a dynamic legend scale, which is useful for mapping different extents: from local to global. We compared the consistency of the proposed method with an available but limited terrain analysis tool of GEE, which resulted in a correlation of 0.89 and 0.96 for aspect and slope over a near-global scale, respectively. In addition to this, we compared the slope, aspect, horizontal, and vertical curvature of a reference site (Mount Ararat) to their equivalent attributes estimated on the System for Automated Geospatial Analysis (SAGA), which achieved a correlation between 0.96 and 0.98. The visual correspondence of TAGEE and SAGA confirms its potential for terrain analysis. The proposed algorithm can be useful for making terrain analysis scalable and adapted to customized needs, benefiting from the high-performance interface of GEE.
Although many Soil Spectral Libraries (SSLs) have been created globally, these libraries still have not been operationalized for end-users. To address this limitation, this study created an online Brazilian Soil Spectral Service (BraSpecS). The system was based on the Brazilian Soil Spectral Library (BSSL) with samples collected in the Visible–Near–Short-wave infrared (vis–NIR–SWIR) and Mid-infrared (MIR) ranges. The interactive platform allows users to find spectra, act as custodians of the data, and estimate several soil properties and classification. The system was tested by 500 Brazilian and 65 international users. Users accessed the platform (besbbr.com.br), uploaded their spectra, and received soil organic carbon (SOC) and clay content prediction results via email. The BraSpecS prediction provided good results for Brazilian data, but performed variably for other countries. Prediction for countries outside of Brazil using local spectra (External Country Soil Spectral Libraries, ExCSSL) mostly showed greater performance than BraSpecS. Clay R2 ranged from 0.5 (BraSpecS) to 0.8 (ExCSSL) in vis–NIR–SWIR, but BraSpecS MIR models were more accurate in most situations. The development of external models based on the fusion of local samples with BSSL formed the Global Soil Spectral Library (GSSL). The GSSL models improved soil properties prediction for different countries. Nevertheless, the proposed system needs to be continually updated with new spectra so they can be applied broadly. Accordingly, the online system is dynamic, users can contribute their data and the models will adapt to local information. Our community-driven web platform allows users to predict soil attributes without learning soil spectral modeling, which will invite end-users to utilize this powerful technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.