The electronic and chemical properties of graphene can be modulated by chemical doping foreign atoms and functional moieties. The general approach to the synthesis of nitrogen-doped graphene (NG), such as chemical vapor deposition (CVD) performed in gas phases, requires transitional metal catalysts which could contaminate the resultant products and thus affect their properties. In this paper, we propose a facile, catalyst-free thermal annealing approach for large-scale synthesis of NG using low-cost industrial material melamine as the nitrogen source. This approach can completely avoid the contamination of transition metal catalysts, and thus the intrinsic catalytic performance of pure NGs can be investigated. Detailed X-ray photoelectron spectrum analysis of the resultant products shows that the atomic percentage of nitrogen in doped graphene samples can be adjusted up to 10.1%. Such a high doping level has not been reported previously. High-resolution N1s spectra reveal that the as-made NG mainly contains pyridine-like nitrogen atoms. Electrochemical characterizations clearly demonstrate excellent electrocatalytic activity of NG toward the oxygen reduction reaction (ORR) in alkaline electrolytes, which is independent of nitrogen doping level. The present catalyst-free approach opens up the possibility for the synthesis of NG in gram-scale for electronic devices and cathodic materials for fuel cells and biosensors.
Graphene can be viewed as an individual atomic plane extracted from graphite, as unrolled single-walled carbon nanotube or as an extended flat fullerene molecule. In this paper, a facile approach to the synthesis of high quality graphene nanosheets in large scale through electrochemical reduction of exfoliated graphite oxide precursor at cathodic potentials (completely reduced potential: -1.5 V) is reported. This method is green and fast, and will not result in contamination of the reduced material. The electrochemically reduced graphene nanosheets have been carefully characterized by spectroscopic and electrochemical techniques in comparison to the chemically reduced graphene-based product. Particularly, FTIR spectra indicate that a variety of the oxygen-containing functional groups have been thoroughly removed from the graphite oxide plane via electrochemical reduction. The chemically converted materials are not expected to exhibit graphene's electronic properties because of residual defects. Indeed, the high quality graphene accelerates the electron transfer rate in dopamine electrochemistry (DeltaE(p) is as small as 44 mV which is much smaller than that on a glassy carbon electrode). This approach opens up the possibility for assembling graphene biocomposites for electrocatalysis and the construction of biosensors.
Boron atoms, with strong electron-withdrawing capability, are doped into graphene frameworks forming boron doped graphene (BG) via a catalyst-free thermal annealing approach in the presence of boron oxide. Atomic force microscopic (AFM) and transmission electron microscopic (TEM) characterizations reveal that the as-prepared BG has a flake-like structure with an average thickness of ca. 2 nm. X-ray photoelectron spectroscopy (XPS) analysis demonstrates that boron atoms can be successfully doped into graphene structures with the atomic percentage of 3.2%. Due to its particular structure and unique electronic properties, the resultant BG exhibits excellent electrocatalytic activity towards oxygen reduction reaction (ORR) in alkaline electrolytes, similar to the performance of Pt catalysts. In addition, the non-metallic BG catalyst shows long-term stability and good CO tolerance superior to that of Pt-based catalysts. These results demonstrate that the BG, as a promising candidate in advanced electrode materials, may substitute Pt-based nanomaterials as a cathode catalyst for ORR in fuel cells as well as other electrochemical applications similar to the reported nitrogen doped graphene.
Water-splitting devices for hydrogen generation through electrolysis (hydrogen evolution reaction, HER) hold great promise for clean energy. However, their practical application relies on the development of inexpensive and efficient catalysts to replace precious platinum catalysts. We previously reported that HER can be largely enhanced through finely tuning the energy level of molybdenum sulfide (MoS) by hot electron injection from plasmonic gold nanoparticles. Under this inspiration, herein, we propose a strategy to improve the HER performance of MoS by engineering its energy level via direct transition-metal doping. We find that zinc-doped MoS (Zn-MoS) exhibits superior electrochemical activity toward HER as evidenced by the positively shifted onset potential to -0.13 V vs RHE. A turnover of 15.44 s at 300 mV overpotential is achieved, which by far exceeds the activity of MoS catalysts reported. The large enhancement can be attributed to the synergistic effect of electronic effect (energy level matching) and morphological effect (rich active sites) via thermodynamic and kinetic acceleration, respectively. This design opens up further opportunities for improving electrocatalysts by incorporating promoters, which broadens the understanding toward the optimization of electrocatalytic activity of these unique materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.