Airway mucus hypersecretion is the main pathogenic factor in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) and the control of mucus secretion is closely associated with survival. Louqin Zhisou decoction (LQZS) has been found to improve lung function and reduce sputum in AECOPD patients, but the mechanism remains unclear. This study aimed to explore the mechanism of LQZS against mucus hypersecretion in lung tissues of rat AECOPD model. Wistar rats were used to establish AECOPD model by intratracheal instillation of LPS in combination with the continuous cigarette smoking. Rats were administrated LQZS/clarithromycin (CAM)/distilled water via gavage every day and all rats were sacrificed after 30 days. BALF and lung tissues were obtained. Lung morphology, cytokines levels, MUC5AC mRNA transcription and protein expression, phosphorylation of the EGFR-PI3K-AKT signaling pathway, and molecules involved in Th17/Treg balance were evaluated. The results demonstrated that LQZS protected rats from decline in pulmonary function and ameliorated lung injury. LQZS treatment decreased the number of goblet cells in airway and suppressed MUC5AC mRNA and protein expression of lung tissues. Furthermore, LQZS attenuated the level of phospho-EGFR, phospho-PI3K and phospho-AKT in AECOPD rats. In addition, LQZS could inhibit the production of proinflammatory cytokines in BALF, including IL-6 and IL-17A and downregulate the secretion of NE and MCP-1, indicating that LQZS could limit inflammatory responses in AECOPD. Moreover, LQZS reversed RORγt and Foxp3 expression, the key transcription factors of Th17 and Treg, respectively. In conclusion, this research demonstrated the inhibitory effects of LQZS against mucus hypersecretion in AECOPD via suppressing EGFR-PI3K-AKT signaling pathway and restoring Th17/Treg balance.
BackgroundAsthma is a chronic inflammatory disease characterized by Th2-predominant inflammation and airway remodeling. Modified Guo Min decoction (MGMD) has been an extensive practical strategy for allergic disorders in China. Although its potential anti-asthmatic activity has been reported, the exact mechanism of action of MGMD in asthma remains unexplored.MethodsNetwork pharmacology approach was employed to predict the active components, potential targets, and molecular mechanism of MGMD for asthma treatment, including drug-likeness evaluation, oral bioavailability prediction, protein–protein interaction (PPI) network construction and analysis, Gene Ontology (GO) terms, and Reactome pathway annotation. Molecular docking was carried out to investigate interactions between active compounds and potential targets.ResultsA total of 92 active compounds and 72 anti-asthma targets of MGMD were selected for analysis. The GO enrichment analysis results indicated that the anti-asthmatic targets of MGMD mainly participate in inflammatory and in airway remolding processes. The Reactome pathway analysis showed that MGMD prevents asthma mainly through regulation of the IL-4 and IL-13 signaling and the specialized pro-resolving mediators (SPMs) biosynthesis. Molecular docking results suggest that each bioactive compounds (quercetin, wogonin, luteolin, naringenin, and kaempferol) is capable to bind with STAT3, PTGS2, JUN, VEGFA, EGFR, and ALOX5.ConclusionThis study revealed the active ingredients and potential molecular mechanism by which MGMD treatment is effective against airway inflammation and remodeling in asthma through regulating IL-4 and IL-13 signaling and SPMs biosynthesis.
Objective. To explore the effects and mechanisms of Bufei Huoxue Capsule (BHC) on chronic obstructive pulmonary disease (COPD) based on network pharmacology. Methods. The effective components and related targets of BHC were collected by searching TCMSP, HERB, and ETCM databases, after which the related targets of COPD were obtained on GeneCards and OMIM databases. The common targets were imported into the STRING database and Cytoscape database to construct a target interaction network and screen core targets. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the Metascape platform. According to the prediction results of network pharmacology, the action mechanism was further examined in an animal model of COPD. The pathological changes of lung tissue were observed by HE staining; goblet cells and mucus secretion in lung tissue were observed by AB-PAS staining, airway collagen deposition was observed by Masson staining, and the expression of NE, TGF-β1, P-EGFR/EGFR, P-ERK1/2/ERK1/2, P-JNK/JNK, and P-P38/P38MAPK protein was detected by Western blot analysis. Results. A total of 379 targets related to BHC and 7391 targets related to COPD were obtained, including 313 potential targets of BHC in treating chronic obstructive pulmonary disease, with JUN, AKT1, TNF, IL6, EGFR, MAPK1, and MAPK14 as the core targets. Through enrichment analysis, BHC may interfere with COPD by regulating the MAPK signal pathway, HIF-1 signal pathway, NF-κB signal pathway, cAMP signal pathway, cGMP-PKG signal pathway, and so on. Animal experiments showed that the BHC could reduce airway inflammatory cell infiltration, inhibit airway epithelial goblet cell proliferation, reduce mucus secretion, and improve small airway collagen fiber deposition in COPD model rats. Besides, BHC could downregulate the protein expression of NE, TGF-β1, P-EGFR, P-ERK1/2, and P-P38MAPK. Conclusion. BHC can reduce airway inflammation, inhibit mucus hypersecretion, and improve airway remodeling by regulating the MAPK signal transduction pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.