Background: In the phase III IMpassion130 trial, combining atezolizumab with first-line nanoparticle albumin-boundpaclitaxel for advanced triple-negative breast cancer (aTNBC) showed a statistically significant progression-free survival (PFS) benefit in the intention-to-treat (ITT) and programmed death-ligand 1 (PD-L1)-positive populations, and a clinically meaningful overall survival (OS) effect in PD-L1-positive aTNBC. The phase III KEYNOTE-355 trial adding pembrolizumab to chemotherapy for aTNBC showed similar PFS effects. IMpassion131 evaluated first-line atezolizumabepaclitaxel in aTNBC. Patients and methods: Eligible patients [no prior systemic therapy or 12 months since (neo)adjuvant chemotherapy] were randomised 2:1 to atezolizumab 840 mg or placebo (days 1, 15), both with paclitaxel 90 mg/m 2 (days 1, 8, 15), every 28 days until disease progression or unacceptable toxicity. Stratification factors were tumour PD-L1 status, prior taxane, liver metastases and geographical region. The primary endpoint was investigator-assessed PFS, tested hierarchically first in the PD-L1-positive [immune cell expression 1%, VENTANA PD-L1 (SP142) assay] population, and then in the ITT population. OS was a secondary endpoint. Results: Of 651 randomised patients, 45% had PD-L1-positive aTNBC. At the primary PFS analysis, adding atezolizumab to paclitaxel did not improve investigator-assessed PFS in the PD-L1-positive population [hazard ratio (HR) 0.82, 95% confidence interval (CI) 0.60-1.12; P ¼ 0.20; median PFS 6.0 months with atezolizumabepaclitaxel versus 5.7 months with placeboepaclitaxel]. In the PD-L1-positive population, atezolizumabepaclitaxel was associated with more favourable unconfirmed best overall response rate (63% versus 55% with placeboepaclitaxel) and median duration of response (7.2 versus 5.5 months, respectively). Final OS results showed no difference between arms (HR 1.11, 95% CI 0.76-1.64; median 22.1 months with atezolizumabepaclitaxel versus 28.3 months with placeboe paclitaxel in the PD-L1-positive population). Results in the ITT population were consistent with the PD-L1-positive population. The safety profile was consistent with known effects of each study drug. Conclusion: Combining atezolizumab with paclitaxel did not improve PFS or OS versus paclitaxel alone. ClinicalTrials.gov: NCT03125902.
Genomic events associated with poor outcome in chronic myeloid leukemia (CML) are poorly understood. We performed whole-exome sequencing, copy-number variation, and/or RNA sequencing for 65 patients to discover mutations at diagnosis and blast crisis (BC). Forty-six patients with chronic-phase disease with the extremes of outcome were studied at diagnosis. Cancer gene variants were detected in 15 (56%) of 27 patients with subsequent BC or poor outcome and in 3 (16%) of 19 optimal responders ( = .007). Frequently mutated genes at diagnosis were ,, and The methyltransferase was a novel recurrently mutated gene. A novel class of variant associated with the Philadelphia (Ph) translocation was detected at diagnosis in 11 (24%) of 46 patients comprising fusions and/or rearrangement of genes on the translocated chromosomes, with evidence of fragmentation, inversion, and imperfect sequence reassembly. These were more frequent at diagnosis in patients with poor outcome: 9 (33%) of 27 vs 2 (11%) of 19 optimal responders ( = .07). Thirty-nine patients were tested at BC, and all had cancer gene variants, including kinase domain mutations in 58%. However, mutations cooccurred with other mutated cancer genes in 89% of cases, and these predated mutations in 62% of evaluable patients. Gene fusions not associated with the Ph translocation occurred in 42% of patients at BC and commonly involved fusion partners that were known cancer genes (78%). Genomic analysis revealed numerous relevant variants at diagnosis in patients with poor outcome and all patients at BC. Future refined biomarker testing of specific variants will likely provide prognostic information to facilitate a risk-adapted therapeutic approach.
• Novel missense germ line DDX41 mutations define an earlier age of onset of hematologic malignancies than loss-of-function alleles.• Carriers of DDX41 germ line mutations usually have normal blood counts until a myeloid or lymphoid malignancy develops.Recently our group and others have identified DDX41 mutations both as germ line and acquired somatic mutations in families with multiple cases of late onset myelodysplastic syndrome (MDS) and/or acute myeloid leukemia (AML), suggesting that DDX41 acts as a tumor suppressor. To determine whether novel DDX41 mutations could be identified in families with additional types of hematologic malignancies, our group screened two cohorts of families with a diverse range of hematologic malignancy subtypes. Among 289 families, we identified nine (3%) with DDX41 mutations. As previously observed, MDS and AML were the most common malignancies, often of the erythroblastic subtype, and 1 family displayed early-onset follicular lymphoma. Five novel mutations were identified, including missense mutations within important functional domains and start-loss and splicing mutations predicted to result in truncated proteins. We also show that most asymptomatic mutation carriers have normal blood counts until malignancy develops. This study expands both the mutation and phenotypic spectra observed in families with germ line DDX41 mutations. With an increasing number of both inherited and acquired mutations in this gene being identified, further study of how DDX41 disruption leads to hematologic malignancies is critical.
Exosomes are discrete populations of small (40-200 nm in diameter) membranous vesicles that are released into the extracellular space by most cell types, eventually accumulating in the circulation. As molecular messengers, exosomes exert a broad array of vital physiologic functions by transporting information between different cell types. Because of these functional properties, they may have potential as biomarker sources for prognostic and diagnostic disease. Recent research has found that exosomes have potential to be utilized as drug delivery agents for therapeutic targets. However, basic researches on exosomes and researches on their therapeutic potential both require the existence of effective and rapid methods for their separation from human samples. In the current absence of a standardized method, there are several methods available for the separation of exosomes, but very few studies have previously compared the efficiency and suitability of these different methods. This review summarized and compared the available traditional and novel methods for the extraction of exosomes from human samples and considered their advantages and disadvantages for use in clinical laboratories and point-of-care settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.