Background
COVID-19 pandemic continues to be a priority in public health worldwide, and factors inherent to SARS-CoV-2 pathogenesis and genomic characteristics are under study. Investigations that evaluate possible risk factors for infection, clinical manifestations, and viral shedding in different specimens also need to clarify possible associations with COVID-19 prognosis and disease outcomes.
Study design
In this study, we evaluated SARS-CoV-2 positivity and estimated viral loads by real-time RT-PCR in stool, sera, and urine samples from 35 patients, with a positive SARS-CoV-2 RNA molecular test in respiratory sample, attended at a University COVID-19 referral hospital in Goiania, Goias, Brazil. Whole-genome sequencing was also performed in samples with higher viral load.
Results
The positivity index was 51.43%, 14.28%, and 5.71% in stool, sera, and urine specimens, respectively. The median viral load was 8.01 × 10
6
GC/g, 2.03 × 10
6
GC/mL, and 1.36 × 10
5
GC/mL in stool, sera, and urine, respectivelly. Of all patients, 88.57% had previous comorbidities, and 48.39% of them had detectable SARS-CoV-2 RNA in at least one type of clinical specimen evaluated by this study (stool, sera or urine). A higher viral load was observed in patients with more than two previous comorbidities and that were classified as severe or critical conditions. Samples with the highest viral loads were sequenced and characterized as B.1.1.33 variant.
Conclusion
We conclude that SARS-CoV-2 RNA is present in more than one type of clinical specimen during the infection, and that the most critical patients had detectable viral RNA in more than one clinical specimen at the same time point.
The GH10 endo-xylanase from Thermoascus aurantiacus CBMAI 756 (XynA) is industrially attractive due to its considerable thermostability and high specific activity. Considering the possibility of a further improvement in thermostability, eleven mutants were created in the present study via site-directed mutagenesis using XynA as a template. XynA and its mutants were successfully overexpressed in Escherichia coli Rosetta-gami DE3 and purified, exhibiting maximum xylanolytic activity at pH 5 and 65°C. Three of the eleven mutants, Q158R, H209N, and N257D, demonstrated increased thermostability relative to the wild type at 70°C and 75°C.Q158R and N257D were stable in the pH range 5.0-10.0, while WT and H209N were stable from pH 8-10. CD analysis demonstrated that the WT and the three mutant enzymes were expressed in a folded form. H209N was the most thermostable mutant, showing a Tm of 71.3°C. Molecular dynamics modeling analyses suggest that the increase in H209N thermostability may beattributed to a higher number of short helices and salt bridges, which displayed a positive charge in the catalytic core, stabilizing its tertiary structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.