Improving our understanding of oxidative damage in biomolecules, antioxidant mechanisms and the inflammatory system - alterations presented in the animal models of mania - is important in helping us to improve our knowledge concerning the pathophysiology of BD, and the mechanisms of action employed by mood stabilizers.
Stress in early life has been appointed as an important phenomenon in the onset of depression and poor response to treatment with classical antidepressants. Furthermore, childhood trauma triggers epigenetic changes, which are associated with the pathophysiology of major depressive disorder (MDD). Treatment with atypical antipsychotics such as quetiapine, exerts therapeutic effect for MDD patients and induces epigenetic changes. This study aimed to analyze the effect of chronic treatment with quetiapine (20mg/kg) on depressive-like behavior of rats submitted to maternal deprivation (MD), as well as the activity of histone acetylation by the enzymes histone acetyl transferases (HAT) and deacetylases (HDAC) and DNA methylation, through DNA methyltransferase enzyme (DNMT) in the prefrontal cortex (PFC), nucleus accumbens (NAc) and hippocampus. Maternally deprived rats had a depressive-like behavior in the forced swimming test and an increase in the HDAC and DNMT activities in the hippocampus and NAc. Treatment with quetiapine reversed depressive-like behavior and reduced the DNMT activity in the hippocampus. This is the first study to show the antidepressant-like effect of quetiapine in animals subjected to MD and a protective effect by quetiapine in reducing epigenetic changes induced by stress in early life. These results reinforce an important role of quetiapine as therapy for MDD.
The present study intends to investigate the effect of lithium (Li) and celecoxib (Cel) coadministration on the behavioral status and oxidative stress parameters in a rat model of mania induced by dextroamphetamine (d-AMPH). Male Wistar rats were treated with d-AMPH or saline (Sal) for 14 days; on the 8th day of treatment, rats received lithium (Li), celecoxib (Cel), Li plus Cel, or water until day 14. Levels of oxidative stress parameters were evaluated in the serum, frontal cortex, and hippocampus. d-AMPH administration induced hyperlocomotion in rats, which was significantly reversed by Li and Cel coadministration. In addition, d-AMPH administration induced damage to proteins and lipids in the frontal cortex and hippocampus of rats. All these impairments were reversed by treatment with Li and/or Cel, in a way dependent on cerebral area and biochemical analysis. Li and Cel coadministration reversed the d-AMPH-induced decrease in catalase activity in cerebral structures. The activity of glutathione peroxidase was decreased in the frontal cortex of animals receiving d-AMPH, and treatment with Li, Cel, or a combination thereof reversed this alteration in this structure. Overall, data indicate hyperlocomotion and alteration in oxidative stress biomarkers in the cerebral structures of rats receiving d-AMPH. Li and Cel coadministration can mitigate these modifications, comprising a potential novel approach for BD therapy.
Studies have suggested the involvement of inflammatory processes in the physiopathology of bipolar disorder. Preclinical evidences have shown that histone deacetylase inhibitors may act as mood-stabilizing agents and protect the brain in models of mania and depression. The aim of the present study was to evaluate the effects of sodium butyrate (SB) and valproate (VPA) on behavioral changes, histone deacetylase activity, and the levels of cytokines in an animal model of mania induced by dextroamphetamine (d-AMPH). Wistar rats were first given d-AMPH or saline (Sal) for a period of 14 days, and then, between the 8th and 14th days, the rats were treated with SB, VPA, or Sal. The activity of histone deacetylase and the levels of cytokines (interleukin (IL) IL-4, IL-6, and IL-10 and tumor necrosis factor-alpha (TNF-α)) were evaluated in the frontal cortex and striatum of the rats. The administration of d-AMPH increased the activity of histone deacetylase in the frontal cortex. Administration of SB or VPA decreased the levels of histone deacetylase activity in the frontal cortex and striatum of rats. SB per se increased the levels of cytokines in both of the brain structures evaluated. AMPH increased the levels of cytokines in both of the brain structures evaluated, and VPA reversed this alteration. The effects of SB on d-AMPH-induced cytokine alterations were dependent on the brain structure and the cytokine evaluated. Despite VPA and SB having a similar mechanism of action, both being histone deacetylase inhibitors, they showed different effects on the levels of cytokines. The present study reinforces the need for more research into histone deacetylase inhibitors being used as a possible target for new medications in the treatment of bipolar disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.