Fibroblasts often constitute the majority of the stromal cells within a breast carcinoma, yet the functional contributions of these cells to tumorigenesis are poorly understood. Using a coimplantation tumor xenograft model, we demonstrate that carcinoma-associated fibroblasts (CAFs) extracted from human breast carcinomas promote the growth of admixed breast carcinoma cells significantly more than do normal mammary fibroblasts derived from the same patients. The CAFs, which exhibit the traits of myofibroblasts, play a central role in promoting the growth of tumor cells through their ability to secrete stromal cell-derived factor 1 (SDF-1); CAFs promote angiogenesis by recruiting endothelial progenitor cells (EPCs) into carcinomas, an effect mediated in part by SDF-1. CAF-secreted SDF-1 also stimulates tumor growth directly, acting through the cognate receptor, CXCR4, which is expressed by carcinoma cells. Our findings indicate that fibroblasts within invasive breast carcinomas contribute to tumor promotion in large part through the secretion of SDF-1.
A PIJfATIVE chemokine receptor that we previously cloned and termed LESTR 1 has recently been shown to function as a coreceptor (termed fusin) for lymphocyte-tropic HIV-1 strains 2 • Cells expressing CD4 became permissive to infection with T -cellline-adapted HIV-1 strains of the syncytium-i.nducing phenotype after transfection with LESTR/fusin complementary DNA. We report here the identification of a human chemokine of the CXC type, stromal cell-derived factor 1 (SDF-1), as the naturaJ ligand for LESTR/fusin, and we propose the term CXCR-4 for this receptor, in keeping with the new cbemokine-receptor nomenclature. SDF-1 activates Chinese hamster ovary (CHO) cells transfected with CXCR-4 eDNA as well as blood leukocytes and lymphocytes. In cell lines expressing CXCR-4 and CD4, and in blood lymphocytes, SDF-1 is a powerful inhibitor of infection by lymphocyte-tropic HIV-1 strains, whereas the CC chemokines RANTES, MIP-1a and MIP-1~, which were shown previously to prevent infection with primary, monocyte-tropic viruses 3 , are inactive. In combination with CC chemokines, which block the infection with monocyte/macrophage-tropic viruses, SDF-1 could help to decrease virus load and prevent the emergence of the syncytium-inducing viruses which are characteristic of the late stages of AIDS 4• LESTR (leukocyte-expressed seven-transmembrane-domain receptor) is an orphan receptor with structural similarity to chemokine receptors. Despite extensive testing of a large number of chemokines, the ligand for LESTR remained elusive 1 • Murine SDF-1 was described as a factor that is produced by bonemarrow stromal cells and shown to induce proliferation of B-cell progenitorsM as well as recruitment of T cells 7 • The human homologue, which was cloned subsequently, is virtually identical to murine SDF-1 (see Methods). SDF-1 is a CXCchemokine with the typical four-cysteine motif and the first two cysteines separated by one amino acid 8 • When human SDF-1 was tested on the CH0-1C2 clone which stably expresses LESTR, a transient rise of cytosolic free Ca 2 + ([Ca 2 +];) was observed (Fig. 1a). This response, which is characteristic of the action of chemokines on blood leukocytes, was not observed with parental CHO cells. Other chemokines, including RANTES (for regulation-upon-activation, normal T expressed and secreted) macrophage inflammatory protein (MIP), MIP-1o: and MIP-1~, were not active. Monocytes, neutrophils and phytohaemagglutinin (PHA)-activated peripheral-blood lymphocytes (PBLs) were also stimulated by SDF-1, as shown by [Ca 2 +]; changes and chemotaxis (Fig. 1b, d). Real-time recordings of Ca 2 + mobilization after sequential stimulation are a reliable way to assess receptor usage by chemokines 8 • Stimulation with a chemokine (at saturating concentrations) causes receptor desensitization, and no response is observed when the cells are restimulated within a short time by a chemokine acting on the same receptor. As shown in Fig. lc, monocytes stimulated with SDF-1 remained fully responsive to subsequent stimulation with ...
Combined phylogenetic and chromosomal location studies suggest that the orphan receptor RDC1 is related to CXC chemokine receptors. RDC1 provides a co-receptor function for a restricted number of human immunodeficiency virus (HIV) isolates, in particular for the CXCR4-using HIV-2 ROD strain. Here we show that CXCL12, the only known natural ligand for CXCR4, binds to and signals through RDC1. We demonstrate that RDC1 is expressed in T lymphocytes and that CXCL12-promoted chemotaxis is inhibited by an anti-RDC1 monoclonal antibody. Concomitant blockade of RDC1 and CXCR4 produced additive inhibitory effects in CXCL12-induced T cell migration. Furthermore, we provide evidence that interaction of CXCL12 with RDC1 is specific, saturable, and of high affinity (apparent K D ≈ 0.4 nM). In CXCR4-negative cells expressing RDC1, CXCL12 promotes internalization of the receptor and chemotactic signals through RDC1. Collectively, our data indicate that RDC1, which we propose to rename as CXCR7, is a receptor for CXCL12.
The three-dimensional structure of stromal cell-derived factor-1 (SDF-1) was determined by NMR spectroscopy. SDF-1 is a monomer with a disordered N-terminal region (residues 1-8), and differs from other chemokines in the packing of the hydrophobic core and surface charge distribution. Results with analogs showed that the N-terminal eight residues formed an important receptor binding site; however, only Lys-1 and Pro-2 were directly involved in receptor activation. Modification to Lys-1 and/or Pro-2 resulted in loss of activity, but generated potent SDF-1 antagonists. Residues 12-17 of the loop region, which we term the RFFESH motif, unlike the N-terminal region, were well defined in the SDF-1 structure. The RFFESH formed a receptor binding site, which we propose to be an important initial docking site of SDF-1 with its receptor. The ability of the SDF-1 analogs to block HIV-1 entry via CXCR4, which is a HIV-1 coreceptor for the virus in addition to being the receptor for SDF-1, correlated with their affinity for CXCR4. Activation of the receptor is not required for HIV-1 inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.