Hydropower development in the Andean Amazon has been underestimated and will disrupt connected human and natural systems.
International audienceKnowledge of fish migration is a prerequisite to sustainable fisheries management and preservation, especially in large international river basins. In particular, understanding whether a migratory lifestyle is compulsory or facultative, and whether adults home to their natal geographic area is paramount to fully appraise disruptions of longitudinal connectivity resulting from damming.In the Amazon, the large migratory catfishes of the Brachyplatystoma genus are apex predators of considerable interest for fisheries. They are believed to use the entire length of the basin to perform their life cycle, with hypothesized homing behaviours. Here, we tested these hypotheses, using the emblematic B. rousseauxii as a model species.We sampled adults close to major breeding areas in the Amazon basin (upper Madeira and upper Amazonas) and assessed their lifetime movements by measuring variations in 87Sr/86Sr along transverse sections of their otoliths (ear stones) using laser ablation multicollector mass spectrometry (LA-MC-ICPMS).We demonstrate that larvae migrate downstream from the Andean piedmont to the lower Amazon, where they grow over a protracted period before migrating upstream as adults. Contrary to prevailing inferences, not all fish spend their nursery stages in the Amazon estuary. By contrast, the passage in the lower or central Amazon seems an obligate part of the life cycle. We further evidence that most adults home to their natal geographic area within the Madeira sub-basin. Such long-distance natal homing is exceptional in purely freshwater fishes.Synthesis and applications. By using otolith microchemistry, we were able to demonstrate a seemingly compulsory basin-wide migratory life cycle of large Amazonian catfishes. This makes them the organisms performing the longest migrations (>8000 km) in fresh waters. This exceptional life history is already jeopardized by two dams recently built in the Madeira River, which block a major migration route and access to a substantial part of their spawning grounds. Major impacts can be anticipated from the current and forthcoming hydroelectric development in the Amazon basin, not only on the populations and fisheries of this apex predator, but also on Amazonian food webs through trophic cascades
the amazon Basin is an unquestionable biodiversity hotspot, containing the highest freshwater biodiversity on earth and facing off a recent increase in anthropogenic threats. The current knowledge on the spatial distribution of the freshwater fish species is greatly deficient in this basin, preventing a comprehensive understanding of this hyper-diverse ecosystem as a whole. Filling this gap was the priority of a transnational collaborative project, i.e. the AmazonFish project -https://www.amazon-fish.com/. Relying on the outputs of this project, we provide the most complete fish species distribution records covering the whole Amazon drainage. The database, including 2,406 validated freshwater native fish species, 232,936 georeferenced records, results from an extensive survey of species distribution including 590 different sources (e.g. published articles, grey literature, online biodiversity databases and scientific collections from museums and universities worldwide) and field expeditions conducted during the project. This database, delivered at both georeferenced localities (21,500 localities) and sub-drainages grains (144 units), represents a highly valuable source of information for further studies on freshwater fish biodiversity, biogeography and conservation.Scientific Data | (2020) 7:96 | https://doi.collections from Peru 25,26 and by initiating sampling campaigns in detected gaps in Colombia, Peru and Brazil. All these spatial gaps in the database will also be prioritized in future updates through literature and web-based sources checking. Researchers holding fish distribution data from any of the current gaps or under-sampled areas (Fig. 2) and that wish to share these data are welcome to join the project. This information will be included with the complete source, after validation, in the next update of the database.
Upstream range shifts of freshwater fishes have been documented in recent years due to ongoing climate change. River fragmentation by dams, presenting physical barriers, can limit the climatically induced spatial redistribution of fishes. Andean freshwater ecosystems in the Neotropical region are expected to be highly affected by these future disturbances. However, proper evaluations are still missing. Combining species distribution models and functional traits of Andean Amazon fishes, coupled with dam locations and climatic projections (2070s), we (a) evaluated the potential impacts of future climate on species ranges, (b) investigated the combined impact of river fragmentation and climate change and (c) tested the relationships between these impacts and species functional traits. Results show that climate change will induce range contraction for most of the Andean Amazon fish species, particularly those inhabiting highlands. Dams are not predicted to greatly limit future range shifts for most species (i.e., the Barrier effect). However, some of these barriers should prevent upstream shifts for a considerable number of species, reducing future potential diversity in some basins. River fragmentation is predicted to act jointly with climate change in promoting a considerable decrease in the probability of species to persist in the long‐term because of splitting species ranges in smaller fragments (i.e., the Isolation effect). Benthic and fast‐flowing water adapted species with hydrodynamic bodies are significantly associated with severe range contractions from climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.