Isoetes are ancient quillworts members of the only genus of the order Isoetales. The genus is slow evolving but is resilient, and widespread worldwide. Two recently described species occur in the Eastern Brazilian Amazon, Isoetes serracarajensis and Isoetes cangae. They are found in the ironstone grasslands known as Canga. While I. serracarajensis is present mostly in seasonal water bodies, I. cangae is known to occur in a single permanent lake at the South mountain range. In this work, we undertake an extensive morphological, physiological and genetic characterization of both species to establish species boundaries and better understand the morphological and genetic features of these two species. Our results indicate that the morphological differentiation of the species is subtle and requires a quantitative assessment of morphological elements of the megaspore for diagnosis. We did not detect differences in microspore output, but morphological peculiarities may establish a reproductive barrier. Additionally, genetic analysis using DNA barcodes and whole chloroplast genomes indicate that although the plants are genetically very similar both approaches provide diagnostic characters. There was no indication of population structuring I. serracarajensis. These results set the basis for a deeper understanding of the evolution of the Isoetes genus.
Cangas (ironstone outcrops) host a specialized flora, characterized by high degree of edaphic endemism and an apparent lack of natural history knowledge of its flora. Due to intense pressure from iron ore mining this ecosystem is under threat and in need of restoration. We studied seed functional traits that are relevant for restoration, translocation and ex situ conservation in 48 species from cangas in eastern Amazon. Were determined the thermal niche breadth, classified seed dormancy and determined methods to overcome it, determined the effect of seed storage on germination, tested the association between germination traits and functional groups, and tested whether seed traits are phylogenetically conserved. We found a broad interspecific variation in most seed traits, except for seed water content. Large interspecific variation in the temperature niche breadth was found among the studied species, but only four species, showed optimum germination at high temperatures of 35–40°C, despite high temperatures under natural conditions. Only 35% of the studied species produced dormant seeds. Mechanical scarification was effective in overcoming physical dormancy and application of gibberellic acid was effective in overcoming physiological dormancy in five species. For the 29 species that seeds were stored for 24 months, 76% showed decreases in the germination percentage. The weak association between germination traits and life-history traits indicate that no particular plant functional type requires specific methods for seed-based translocations. Exceptions were the lianas which showed relatively larger seeds compared to the other growth-forms. Dormancy was the only trait strongly related to phylogeny, suggesting that phylogenetic relatedness may not be a good predictor of regeneration from seeds in cangas. Our study provides support to better manage seed sourcing, use, storage and enhancement techniques with expected reduced costs and increased seedling establishment success.
Background Two endemic lycophyte species Isoetes cangae and Isoetes serracarajensis have been recently described in the State of Pará in the Amazon forest located in northern Brazil. Isoetes L. has survived through three mass extinctions. Plants are considered small-sized, heterosporous, and can display a great diversity of physiological adaptations to different environments. Thus, the current study aimed to estimate the genetic variation of the populations of I. cangae and I. serracarajensis to generate information about their different mechanisms for survival at the same geographical location that could point to different reproductive, adaptative and dispersal strategies and should be considered for effective conservation strategies. Methods The genetic diversity and population structure of I. cangae and I. serracarajensis were investigated using Inter Simple Sequence Repeat (ISSR) molecular markers. Total genomic DNA was isolated, and the genetic diversity parameters were calculated. Results The sixteen primers produced 115 reproducible bands, 87% of which were polymorphic. A high level of polymorphic loci (81.74% and 68.48%) and a high Shannon index (Sh = 0.376 and 0.289) were observed for I. cangae and I. serracarajensis, respectively. The coefficient of genetic differentiation between population areas (GST) showed a higher value in I. serracarajensis (0.5440). Gene flow was higher in I. cangae (1.715) and lower in I. serracarajensis populations (0.419). Overall, the results further show that I. serracarajensis and I. cangae are two species with considerable genetic variation and that these differences may reflect their habitats and modes of reproduction. These results should be considered in the development of effective conservation strategies for both species.
Advancing functional ecology depends fundamentally on the availability of data on reproductive traits, including those from tropical plants, which have been historically underrepresented in global trait databases. Although some valuable databases have been created recently, they are mainly restricted to temperate areas and vegetative traits such as leaf and wood traits. Here, we present Rock n' Seeds, a database of seed functional traits and germination experiments from Brazilian rock outcrop vegetation, recognized as outstanding For affiliation refer to page 2
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.