IMPORTANCE Coronavirus disease 2019 (COVID-19) infection has resulted in a global crisis. Investigating the potential association of climate and seasonality with the spread of this infection could aid in preventive and surveillance strategies. OBJECTIVE To examine the association of climate with the spread of COVID-19 infection. DESIGN, SETTING, AND PARTICIPANTS This cohort study examined climate data from 50 cities worldwide with and without substantial community spread of COVID-19. Eight cities with substantial spread of COVID-19
Biophysical characteristics of sapwood and outer parenchyma water storage compartments were studied in stems of eight dominant Brazilian Cerrado tree species to assess the impact of differences in tissue capacitance on wholeplant water relations. The rate of decline in tissue water potential with relative water content (RWC) was greater in the outer parenchyma than in the sapwood for most of the species, resulting in tissue-and species-specific differences in capacitance. Sapwood capacitance on a tissue volume basis ranged from 40 to 160 kg m -3 MPa -1 , whereas outer parenchyma capacitance ranged from 25 to only 60 kg m -3 MPa -1 . In addition, osmotic potentials at full turgor and at the turgor loss point were more negative for the outer parenchyma compared with the sapwood, and the maximum bulk elastic modulus was higher for the outer parenchyma than for the sapwood. Sapwood capacitance decreased linearly with increasing sapwood density across species, but there was no significant correlation between outer parenchyma capacitance and tissue density. Midday leaf water potential, the total hydraulic conductance of the soil/leaf pathway and stomatal conductance to water vapour (gs) all increased with stem volumetric capacitance, or with the relative contribution of stored water to total daily transpiration. However, the difference between the pre-dawn water potential of non-transpiring leaves and the weighted average soil water potential, a measure of the water potential disequilibrium between the plant and soil, increased asymptotically with total stem capacitance across species, implying that overnight recharge of water storage compartments was incomplete in species with greater capacitance. Overall, stem capacitance contributes to homeostasis in the diurnal and seasonal water balance of Cerrado trees.
Upland tropical forests have expanded and contracted in response to past climates, but it is not clear whether similar dynamics were exhibited by gallery (riparian) forests within savanna biomes. Because such forests generally have access to ample water, their extent may be buffered against changing climates. We tested the long-term stability of gallery forest boundaries by characterizing the border between gallery forests and savannas and tracing the presence of gallery forest through isotopic analysis of organic carbon in the soil profile. We measured leaf area index, grass vs. shrub or tree coverage, the organic carbon, phosphorus, nitrogen and calcium concentrations in soils and the carbon isotope ratios of soil organic matter in two transitions spanning gallery forests and savanna in a Cerrado ecosystem. Gallery forests without grasses typically show a greater leaf area index in contrast to savannas, which show dense grass coverage. Soils of gallery forests have significantly greater concentrations of organic carbon, phosphorus, nitrogen and calcium than those of savannas. Soil organic carbon of savannas is significantly more enriched in 13 C compared with that of gallery forests. This difference in enrichment is in part caused by the presence of C 4 grasses in savanna ecosystem and its absence in gallery forests. Using the 13 C abundance as a signature for savanna and gallery forest ecosystems in 1 m soil cores, we show that the borders of gallery forests have expanded into the savanna and that this process initiated at least 3000-4000 BP based on 14 C analysis. Gallery forests, however, may be still expanding as we found more recent transitions according to 14 C activity measurements. We discuss the possible mechanisms of gallery forest expansion and the means by which nutrients required for the expansion of gallery forest might accumulate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.