The aim of this research is to improve our current understanding of the deglaciation stages in the southeastern Pyrenees and integrate it into reconstructions of the long-term deglaciation in the Iberian mountains since the Last Glaciation. First, we examine the existing chronological data for deglaciation in Iberian mountain ranges, mainly focusing on the Pyrenees and the results derived from cosmic ray exposure dating methods. Then, we recalculate the age of 17 samples from four different areas in the SE Pyrenees (Ar anser, La Llosa and Duran valleys and Malniu-Guils complex) based on the 36 Cl isotope and applying a new age calculator. In addition, we date eight new samples from the Malniu-Guils complex to provide a more accurate chronology for this site. The results do not clarify the timing of the maximum glacier extent, but support an extensive glacial advance followed by multiple small advances and retreats during the Last Glacial Maximum (LGM). Geomorphological and chronological data show evidence of massive deglaciation at the end of the LGM around 18 ka, and deglaciation was practically complete during the Bølling-Allerød interstadial. There is no geomorphological evidence of glacial advances in the cirques during the Younger Dryas. Instead, cirque wallswere coveredwith rock glaciers during the Bølling-Allerød interstadial. The fronts of these rock glaciers stabilized at the end of this period, while their roots remained active until well into the Holocene.Nuria Andr es (nandresp@ucm.es), Jos e M. Fern andez-Fern andez,
.
The Sierra Nevada is the highest mountain system on the Iberian Peninsula (Mulhacén 3482 m; Veleta 3308 m) and is located in the extreme SE region of Spain (lat 37°N, long 3°W). Bibliographic resources, particularly from the eighteenth to twentieth centuries, provide insights into the changing summit landscape as the effects of cold, ice, snow and wind shaped its morphology.
The selected references emphasize the Sierra's evolving climate reflected in the glaciers and snow hollows, and in the sparse vegetation above certain altitudes. Scientists had established bioclimatic conditions for the entire range in the early nineteenth century, and their works reflect the progression of ideas, particularly in the area of natural sciences, that influenced the period chosen for this study.
This information, in addition to current knowledge about the morphogenetic dynamics of the Sierra Nevada, provides the basis for a comparison of the dominant environments from the Little Ice Age to the present, using the most significant high mountain morphological features as a guide. The most relevant findings indicate that cold climate processes (soli‐gelifluction, frost creep and nivation) were more predominant during the eighteenth and nineteenth centuries than they are today.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.