The main direction proposed by the community of experts in the field of laser-driven ion acceleration is to improve particle beam features (maximum energy, charge, emittance, divergence, monochromaticity, shot-to-shot stability) in order to demonstrate reliable and compact approaches to be used for multidisciplinary applications, thus, in principle, reducing the overall cost of a laser-based facility compared to a conventional accelerator one and, at the same time, demonstrating innovative and more effective sample irradiation geometries. The mission of the laser-driven ion target area at ELI-Beamlines (Extreme Light Infrastructure) in Dolní Břežany, Czech Republic, called ELI Multidisciplinary Applications of laser-Ion Acceleration (ELIMAIA) , is to provide stable, fully characterized and tuneable beams of particles accelerated by Petawatt-class lasers and to offer them to the user community for multidisciplinary applications. The ELIMAIA beamline has been
Nuclear fusion between protons and boron-11 nuclei has undergone a revival of interest thanks to the rapid progress in pulsed laser technology. Potential applications of such reaction range from controlled nuclear fusion to radiobiology and cancer therapy. A laser-driven fusion approach consists in the interaction of high-power, high-intensity pulses with H- and B-rich targets. We report on an experiment exploiting proton-boron fusion in CN-BN targets to obtain high-energy alpha particle beams (up to 5 MeV) using a very compact approach and a tabletop laser system with a peak power of ~10 GW, which can operate at high-repetition rate (up to 1 kHz). The secondary resonance in the cross section of proton-boron fusion (~150 keV in the center-of-mass frame) is exploited using a laser-based approach. The generated alpha particles are characterized in terms of energy, flux, and angular distribution using solid-state nuclear-track detectors, demonstrating a flux of ~105 particles per second at 10 Hz, and ~106 per second at 1 kHz. Hydrodynamic and particle-in-cell numerical simulations support our experimental findings. Potential impact of our approach on future spread of ultra-compact, multi-MeV alpha particle sources driven by moderate intensity (1016-1017 W/cm2) laser pulses is anticipated.
Fast solid target delivery and plasma-ion detection systems have been designed and developed to be used in high intensity laser-matter interaction experiments. We report on recent progress in the development and testing of automated systems to refresh solid targets at a high repetition rate during high peak power laser operation (>1 Hz), along with ion diagnostics and corresponding data collection and real-time analysis methods implemented for future use in a plasma-based ion acceleration beamline for multidisciplinary user applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.