We show here the first colloidal synthesis of double perovskite Cs2AgInCl6 nanocrystals (NCs) with a control over their size distribution. In our approach, metal carboxylate precursors and ligands (oleylamine and oleic acid) are dissolved in diphenyl ether and reacted at 105 °C with benzoyl chloride. The resulting Cs2AgInCl6 NCs exhibit the expected double perovskite crystal structure, are stable under air, and show a broad spectrum white photoluminescence (PL) with quantum yield of ∼1.6 ± 1%. The optical properties of these NCs were improved by synthesizing Mn-doped Cs2AgInCl6 NCs through the simple addition of Mn-acetate to the reaction mixture. The NC products were characterized by the same double perovskite crystal structure, and Mn doping levels up to 1.5%, as confirmed by elemental analyses. The effective incorporation of Mn ions inside Cs2AgInCl6 NCs was also proved by means of electron spin resonance spectroscopy. A bright orange emission characterized our Mn-doped Cs2AgInCl6 NCs with a PL quantum yield as high as ∼16 ± 4%.
Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB receptors. Genetic exclusion of CB receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB receptors signal through intra-mitochondrial Gα protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.
Bidirectional communication between neurons and astrocytes shapes synaptic plasticity and behavior. D-serine is a necessary co-agonist of synaptic N-methyl-D-aspartate receptors (NMDARs), but the physiological factors regulating its impact on memory processes are scantly known. We show that astroglial CB receptors are key determinants of object recognition memory by determining the availability of D-serine at hippocampal synapses. Mutant mice lacking CB receptors from astroglial cells (GFAP-CB-KO) displayed impaired object recognition memory and decreased in vivo and in vitro long-term potentiation (LTP) at CA3-CA1 hippocampal synapses. Activation of CB receptors increased intracellular astroglial Ca levels and extracellular levels of D-serine in hippocampal slices. Accordingly, GFAP-CB-KO displayed lower occupancy of the co-agonist binding site of synaptic hippocampal NMDARs. Finally, elevation of D-serine levels fully rescued LTP and memory impairments of GFAP-CB-KO mice. These data reveal a novel mechanism of in vivo astroglial control of memory and synaptic plasticity via the D-serine-dependent control of NMDARs.
The purpose of this study was to investigate the influence of moderate physical activity (MPA) on the expression of osteoarthritis (OA)-related (IL-1β, IL-6, TNF-α, MMP-13) and anti-inflammatory and chondroprotective (IL-4, IL-10, lubricin) biomarkers in the synovium of an OA-induced rat model. A total of 32 rats were divided into four groups: Control rats (Group 1); rats performing MPA (Group 2); anterior cruciate ligament transection (ACLT)-rats with OA (Group 3); and, ACLT-rats performing MPA (Group 4). Analyses were performed using Hematoxylin & Eosin (H&E) staining, histomorphometry and immunohistochemistry. In Group 3, OA biomarkers were significantly increased, whereas, IL-4, IL-10, and lubricin were significantly lower than in the other experimental groups. We hypothesize that MPA might partake in rescuing type B synoviocyte dysfunction at the early stages of OA, delaying the progression of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.