A massive chemical detonation occurred on August 4, 2020 in the Port of Beirut, Lebanon. An uncontrolled fire in an adjacent warehouse ignited ~2,750 tons of Ammonium Nitrate (AN), producing one of the most devastating blasts in recent history. The blast supersonic pressure and heat wave claimed the lives of 220 people and injured more than 6,500 instantaneously, with severe damage to the nearby dense residential and commercial areas. This review represents one of the in-depth reports to provide a detailed analysis of the Beirut blast and its health and environmental implications. It further reviews prior AN incidents and suggests actionable recommendations and strategies to optimize chemical safety measures, improve emergency preparedness, and mitigate the delayed clinical effects of blast and toxic gas exposures. These recommended actionable steps offer a starting point for government officials and policymakers to build frameworks, adopt regulations, and implement chemical safety protocols to ensure safe storage of hazardous materials as well as reorganizing healthcare system disaster preparedness to improve emergency preparedness in response to similar large-scale disasters and promote population safety. Future clinical efforts should involve detailed assessment of physical injuries sustained by blast victims, with systemic mitigation and possible treatment of late blast effects involving individuals, communities and the region at large.
The therapeutic use of RhoA inhibitors (RhoAi) has been experimentally tested in spinal cord injury (SCI). In order to decipher the underlying molecular mechanisms involved in such a process, an neuroproteomic-systems biology platform was developed in which the pan-proteomic profile of the dorsal root ganglia (DRG) cell line ND7/23 DRG was assessed in a large array of culture conditions using RhoAi and/or conditioned media obtained from SCI derived spinal cord slices. A fine mapping of the spatio-temporal molecular events of the RhoAi treatment in SCI was performed. The data obtained allow a better understanding of regeneration/degeneration induced above and below the lesion site. Results notably showed a time-dependent alteration of the transcription factors profile along with the synthesis of growth cone-related factors (receptors, ligands, and signaling pathways) in RhoAi treated DRG cells. Furthermore, we assessed in a rat SCI model the impact of RhoAi treatment administered via alginate scaffold that was combined with FK506 delivery. The improved recovery of locomotion was detected only at the early postinjury time points, whereas after overall survival a dramatic increase of synaptic contacts on outgrowing neurites in affected segments was observed. We validate these results by proteomic studies along the spinal cord segments from tissue and secreted media analyses, confirming the increase of the synaptogenesis expression factors under RhoAi treatment. Taken together, we demonstrate that RhoAi treatment seems to be useful to stimulate neurite outgrowth in both as well environments. However, for experiments there is a need for sustained delivery regiment to facilitate axon regeneration and promote synaptic reconnections with appropriate target neurons also at chronic phase, which in turn may lead to higher assumption for functional improvement.
Nervous system tumors represent some of the highly aggressive cancers in both children and adults, particularly neuroblastoma and glioblastoma. Many studies focused on the pathogenic role of the Akt pathway and the mechanistic target of Rapamycin (mTOR) complex in mediating the progression of various types of cancer, which designates the Akt/mTOR signaling pathway as a master regulator for cancer. Current studies are also elucidating the mechanisms of cancer stem cells (CSCs) in replenishing tumors and explicating the strong correlation between the Akt/mTOR pathway and CSC biology. This instigates the development of novel treatments that target CSCs via inhibiting this pathway to prevent recurrence in various cancer subtypes. In accordance, neuroblastoma and glioblastoma tumors are believed to originate from stem/progenitor cells or dedifferentiated mature neural/glial cells transformed into CSCs, which warrants targeting this subpopulation of CSCs in these tumors. In our study, Triciribine and Rapamycin were used to assess the role of inhibiting two different points of the Akt/mTOR pathway in vitro on U251 (glioblastoma) and SH-SY5Y (neuroblastoma) human cell lines and their CSCs. We showed that both drugs minimally decrease the survival of U251 and SH-SY5Y cells in a 2D model, while this effect was much more pronounced in a 3D culture model. Triciribine and Rapamycin decreased migratory abilities of both cell lines and decreased their sphere-forming units (SFU) by extinguishing their CSC populations. Together, we concluded that Rapamycin and Triciribine proved to be effective in the in vitro treatment of glioblastoma and neuroblastoma, by targeting their CSC population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.