C9orf82 protein, or conserved anti-apoptotic protein 1 or caspase activity and apoptosis inhibitor 1 (CAAP1) has been implicated as a negative regulator of the intrinsic apoptosis pathway by modulating caspase expression and activity. In contrast, an independent genome wide screen for factors capable of driving drug resistance to the topoisomerase II (Topo II) poisons doxorubicin and etoposide, implicated a role for the nuclear protein C9orf82 in delaying DSBs repair downstream of Topo II, hereby sensitizing cells to DSB induced apoptosis. To determine its function in a genetically defined setting in vivo and ex vivo, we here employed CRISPR/Cas9 technology in zygotes to generate a C9orf82 knockout mouse model. C9orf82ko/ko mice were born at a Mendelian ratio and did not display any overt macroscopic or histological abnormalities. DSBs repair dependent processes like lymphocyte development and class switch recombination (CSR) appeared normal, arguing against a link between the C9orf82 encoded protein and V(D)J recombination or CSR. Most relevant, primary pre-B cell cultures and Tp53 transformed mouse embryo fibroblasts (MEFs) derived from C9orf82ko/ko E14.5 and wild type embryos displayed comparable sensitivity to a number of DNA lesions, including DSBs breaks induced by the topoisomerase II inhibitors, etoposide and doxorubicin. Likewise, the kinetics of γH2AX formation and resolution in response to etoposide of C9orf82 protein proficient, deficient and overexpressing MEFs were indistinguishable. These data argue against a direct role of C9orf82 protein in delaying repair of Topo II generated DSBs and regulating apoptosis. The genetically defined systems generated in this study will be of value to determine the actual function of C9orf82 protein.
Differentiation of naïve peripheral B cells into terminally differentiated plasma cells is characterized by epigenetic alterations, yet the epigenetic mechanisms that control B cell fate remain unclear. Here we identified a central role for the histone H3K79 methyltransferase DOT1L in controlling B cell differentiation. Murine B cells lacking Dot1L failed to establish germinal centers (GC) and normal humoral immune responses in vivo. In vitro, activated B cells showed aberrant differentiation and prematurely acquired plasma cell features. Mechanistically, combined epigenomics and transcriptomics analysis revealed that DOT1L promotes expression of a pro-proliferative, pro-GC program. In addition, DOT1L supports the repression of an anti-proliferative, plasma cell differentiation program by maintaining expression of the H3K27 methyltransferase Ezh2, the catalytic component of Polycomb Repressor Complex 2 (PRC2). Our findings show that DOT1L is a central modulator of the core transcriptional and epigenetic landscape in B cells, establishing an epigenetic barrier that warrants B cell naivety and GC B cell differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.