Glaciers around the globe are melting rapidly, threatening the receiving environments of the world's fresh water reservoirs with significant changes. The meltwater, carried by rivers, contains large amounts of suspended sediment particles, producing longitudinal gradients in the receiving lakes. These gradients may result in changes in the light : nutrient ratio that affect grazer performance by altering elemental food quality. Thus, glacial melting may induce a shift in the phytoplankton carbon : nutrient ratio and hence influence the dominance of herbivorous zooplankton through stoichiometric mechanisms. To test this hypothesis, we combined field and experimental data, taking advantage of a natural light intensity gradient caused by glacial clay input in a deep oligotrophic Patagonian lake. Across this gradient, we evaluated the abundances of two consumer taxa with different phosphorus requirements, the copepod Boeckella gracilipes and the cladoceran Daphnia commutata, using a six-station transect along the lake. We found significant differences in light : nutrient ratio and stoichiometric food quality of the seston, together with a switch from dominance of P-rich Daphnia in low carbon : nutrient stations to dominance of low-P copepods in high carbon : nutrient stations. The laboratory experiments confirmed that the difference in the carbon : nutrient ratio across the gradient is sufficient to impair Daphnia growth. The overall patterns are consistent with our prediction that shifts in the environmental light : nutrient ratio as a result of glacial melting would contribute to shifts in the dominance of stoichiometrically contrasting taxa in consumer guilds.
Question: Does the proximity of shrubs affect seasonal water stress of young Austrocedrus chilensis trees (a native conifer of the Austral Temperate Forest of South America) in xeric sites?Location: A. chilensis xeric forest in northwest Patagonia, Argentina.
Methods:We examined the dependence of predawn twig water potential on tree development (seedling to adult) and proximity to nurse shrubs during spring and summer. We analysed spatial associations of seedlings, saplings and adult trees with nurse shrubs, and also evaluated if trees affected shrub canopy vitality.Results: Water stress in Austrocedrus trees was affected by shrub presence. Small trees (i.e.o0.5 m in height) growing in the open were most stressed, particularly in summer. Small trees growing within a shrub canopy had low water stress and little change between spring and summer. The opposite trend, however, was true for the medium-height category (i.e. 0.5-1.5 m in height); trees in this size category were more stressed when growing within the shrub canopy than in the open. Larger Austrocedrus trees (i.e.42 m in height) were not affected by shrub presence. Austrocedrus trees were spatially associated with shrubs in all height classes; however, the percentage of living shrub canopy decreased with tree height.
Conclusions:In xeric areas of northwest Patagonia, the strength and direction of interactions between A. chilensis and shrubs, in terms of tree water stress, are dynamic and modulated by tree size and environmental conditions. Overall, positive effects of shrubs on early developmental stages appear to be more important than subsequent negative interactions, since nursing effects could generate a spatial association of shrubs and Austrocedrus trees that persists through later successional stages. These findings shed light on mechanisms behind successional changes, and have important conservation and management implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.