BACKGROUNDCoronary revascularization guided by fractional flow reserve (FFR) is associated with better patient outcomes after the procedure than revascularization guided by angiography alone. It is unknown whether the instantaneous wave-free ratio (iFR), an alternative measure that does not require the administration of adenosine, will offer benefits similar to those of FFR.
METHODSWe randomly assigned 2492 patients with coronary artery disease, in a 1:1 ratio, to undergo either iFR-guided or FFR-guided coronary revascularization. The primary end point was the 1-year risk of major adverse cardiac events, which were a composite of death from any cause, nonfatal myocardial infarction, or unplanned revascularization. The trial was designed to show the noninferiority of iFR to FFR, with a margin of 3.4 percentage points for the difference in risk.
RESULTSAt 1 year, the primary end point had occurred in 78 of 1148 patients (6.8%) in the iFR group and in 83 of 1182 patients (7.0%) in the FFR group (difference in risk, −0.2 percentage points; 95% confidence interval [CI], −2.3 to 1.8; P<0.001 for noninferiority; hazard ratio, 0.95; 95% CI, 0.68 to 1.33; P = 0.78). The risk of each component of the primary end point and of death from cardiovascular or noncardiovascular causes did not differ significantly between the groups. The number of patients who had adverse procedural symptoms and clinical signs was significantly lower in the iFR group than in the FFR group (39 patients [3.1%] vs. 385 patients [30.8%], P<0.001), and the median procedural time was significantly shorter (40.5 minutes vs. 45.0 minutes, P = 0.001).
CONCLUSIONSCoronary revascularization guided by iFR was noninferior to revascularization guided by FFR with respect to the risk of major adverse cardiac events at 1 year. The rate of adverse procedural signs and symptoms was lower and the procedural time was shorter with iFR than with FFR. ( Use of Instantaneous Wave-free R atio in PCI F or the past 20 years, physiological measurements obtained during invasive procedures have been used to guide coronary revascularization. Pioneering work supported the use of flow measurements to make safe decisions about revascularization, 1,2 but this approach was soon superseded by the use of fractional flow reserve (FFR), which measures pressure as a surrogate of flow to estimate the severity of stenosis. 3-5 FFR was successful largely because of its technical simplicity and because clinical trials showed that it was associated with improved clinical outcomes after percutaneous coronary intervention (PCI). 6,7 Consequently, FFR is now included in the appropriate-use criteria for coronary angiography and in the American College of Cardiology-American Heart Association-European Society of Cardiology guidelines; despite these recommendations, its adoption remains limited. [8][9][10] FFR must be measured during maximal hyperemia, which is typically induced with the administration of a potent intravenous or intracoronary vasodilator, such as adenosine. 11 Several studies have...
Hypertrophic cardiomyopathy (HCM) is a frequent genetic cardiac disease and the most common cause of sudden cardiac death in young individuals. Most of the currently known HCM disease genes encode sarcomeric proteins. Previous studies have shown an association between CSRP3 missense mutations and either dilated cardiomyopathy (DCM) or HCM, but all these studies were unable to provide comprehensive genetic evidence for a causative role of CSRP3 mutations. We used linkage analysis and identified a CSRP3 missense mutation in a large German family affected by HCM. We confirmed CSRP3 as an HCM disease gene. Furthermore, CSRP3 missense mutations segregating with HCM were identified in four other families. We used a newly designed monoclonal antibody to show that muscle LIM protein (MLP), the protein encoded by CSRP3, is mainly a cytosolic component of cardiomyocytes and not tightly anchored to sarcomeric structures. Our functional data from both in vitro and in vivo analyses suggest that at least one of MLP's mutated forms seems to be destabilized in the heart of HCM patients harbouring a CSRP3 missense mutation. We also present evidence for mild skeletal muscle disease in affected persons. Our results support the view that HCM is not exclusively a sarcomeric disease and also suggest that impaired mechano-sensory stress signalling might be involved in the pathogenesis of HCM.
Mechanical circulatory support (MCS) is often required to stabilize patients with acute fulminant myocarditis with cardiogenic shock. This review gives an overview of the successful use of left-sided Impella in the setting of fulminant myocarditis and cardiogenic shock as the sole means of MCS as well as in combination with right ventricular (RV) support devices including extracorporeal life support (ECLS) (ECMELLA) or an Impella RP (BI-PELLA). It further provides evidence from endomyocardial biopsies that in addition to giving adequate support, LV unloading by Impella exhibits disease-modifying effects important for myocardial recovery (i.e., bridge-to-recovery) achieved by this newly termed "prolonged Impella" (PROPELLA) concept in which LV-IMPELLA 5.0, implanted via an axillary approach, provides support in awake, mobilized patients for several weeks. Finally, this review addresses the question of how to define the appropriate time point for weaning strategies and for changing or discontinuing unloading in fulminant myocarditis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.