The emergence of drug-resistant bacteria poses a serious threat to human health. In the case of several antibiotics, including those of the quinolone and rifamycin classes, bacteria rapidly acquire resistance through mutation of chromosomal genes during therapy. In this work, we show that preventing induction of the SOS response by interfering with the activity of the protease LexA renders pathogenic Escherichia coli unable to evolve resistance in vivo to ciprofloxacin or rifampicin, important quinolone and rifamycin antibiotics. We show in vitro that LexA cleavage is induced during RecBC-mediated repair of ciprofloxacin-mediated DNA damage and that this results in the derepression of the SOS-regulated polymerases Pol II, Pol IV and Pol V, which collaborate to induce resistance-conferring mutations. Our findings indicate that the inhibition of mutation could serve as a novel therapeutic strategy to combat the evolution of antibiotic resistance.
Organisms are defined by the information encoded in their genomes, and since the evolution of life, this information has been encoded using a two base pair genetic alphabet (A-T and G-C). In vitro, the alphabet has been expanded to include several unnatural base pairs (UBPs)1–3. We have developed a class of UBPs formed between nucleotides bearing hydrophobic nucleobases, exemplified by the pair formed between d5SICS and dNaM (d5SICS-dNaM, Fig. 1a), which is efficiently PCR amplified1 and transcribed4,5 in vitro, and whose unique mechanism of replication has been characterized6,7. However, expansion of a organism’s genetic alphabet presents new and unprecedented challenges: the unnatural nucleoside triphosphates must enter the cell; endogenous polymerases must be able to faithfully incorporate the unnatural triphosphates into DNA within the complex cellular milieu; and finally, the UBP must be stable in the presence of pathways that maintain the integrity of DNA. Here we show that an exogenously expressed algal nucleotide triphosphate transporter efficiently imports the triphosphates of both d5SICS and dNaM (d5SICSTP and dNaMTP) into E. coli, and that the endogenous replication machinery uses them to accurately replicate a plasmid containing d5SICS-dNaM. Neither the presence of the unnatural triphosphates nor the replication of the UBP introduces a significant growth burden. Lastly, we find that the UBP is not efficiently excised by DNA repair pathways. Thus, the resulting bacterium is the first organism to stably propagate an expanded genetic alphabet.
Pseudomonas aeruginosa infections can be virtually impossible to eradicate, and the evolution of resistance during antibiotic therapy is a significant concern. In this study, we use DNA microarrays to characterize the global transcriptional response of P. aeruginosa to clinical-like doses of the antibiotic ciprofloxacin and also to determine the component that is regulated by LexA cleavage and the SOS response. We find that genes involved in virtually every facet of metabolism are down-regulated in response to ciprofloxacin. The LexA-controlled SOS regulon identified by microarray analysis includes only 15 genes but does include several genes that encode proteins involved in recombination and replication, including two inducible polymerases known to play a role in mutation and the evolution of antibiotic resistance in other organisms. The data suggest that the inhibition of LexA cleavage during therapy might help combat this pathogen by decreasing its ability to adapt and evolve resistance.
Since at least the last common ancestor of all life on earth, genetic information has been stored in a four-letter alphabet that is propagated and retrieved by the formation of two base pairs. The central goal of synthetic biology is to create new life forms and functions1, and the most general route to this goal is the creation of semi-synthetic organisms (SSOs) whose DNA harbors two additional letters that form a third, unnatural base pair (UBP). Previously, our efforts to generate such SSOs culminated in the creation of a strain of Escherichia coli that by virtue of a nucleoside triphosphate transporter from Phaeodactylum tricornutum (PtNTT2), imports the requisite unnatural triphosphates from the media and then uses them to replicate a plasmid containing the UBP dNaM-dTPT3 (Fig. 1a)2. While the SSO stores increased information, retrieval of the information requires in vivo transcription of the UBP into mRNA and tRNA, aminoacylation of the tRNA with a non-canonical amino acid (ncAA), and finally, efficient participation of the UBP in decoding at the ribosome. Here, we report the in vivo transcription of DNA containing dNaM and dTPT3 into mRNAs with two different unnatural codons and tRNAs with cognate unnatural anticodons, and their efficient decoding at the ribosome to direct the site-specific incorporation of natural or ncAAs into superfolder green fluorescent protein (sfGFP). The results demonstrate that interactions other than hydrogen bonding can contribute to every step of information storage and retrieval. The resulting SSO both encodes and retrieves increased information and should serve as a platform for the creation of new life forms and functions.
Staphylococcus aureus infections can be difficult to treat due to both multidrug resistance and the organism's remarkable ability to persist in the host. Persistence and the evolution of resistance may be related to several complex regulatory networks, such as the SOS response, which modifies transcription in response to environmental stress. To understand how S. aureus persists during antibiotic therapy and eventually emerges resistant, we characterized its global transcriptional response to ciprofloxacin. We found that ciprofloxacin induces prophage mobilization as well as significant alterations in metabolism, most notably the up-regulation of the tricarboxylic acid cycle. In addition, we found that ciprofloxacin induces the SOS response, which we show, by comparison of a wild-type strain and a non-SOS-inducible lexA mutant strain, includes the derepression of 16 genes. While the SOS response of S. aureus is much more limited than those of Escherichia coli and Bacillus subtilis, it is similar to that of Pseudomonas aeruginosa and includes RecA, LexA, several hypothetical proteins, and a likely error-prone Y family polymerase whose homologs in other bacteria are required for induced mutation. We also examined induced mutation and found that either the inability to derepress the SOS response or the lack of the LexA-regulated polymerase renders S. aureus unable to evolve antibiotic resistance in vitro in response to UV damage. The data suggest that up-regulation of the tricarboxylic acid cycle and induced mutation facilitate S. aureus persistence and evolution of resistance during antibiotic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.