More than a billion humans worldwide are predicted to be completely deficient in the fast skeletal muscle fiber protein alpha-actinin-3 owing to homozygosity for a premature stop codon polymorphism, R577X, in the ACTN3 gene. The R577X polymorphism is associated with elite athlete status and human muscle performance, suggesting that alpha-actinin-3 deficiency influences the function of fast muscle fibers. Here we show that loss of alpha-actinin-3 expression in a knockout mouse model results in a shift in muscle metabolism toward the more efficient aerobic pathway and an increase in intrinsic endurance performance. In addition, we demonstrate that the genomic region surrounding the 577X null allele shows low levels of genetic variation and recombination in individuals of European and East Asian descent, consistent with strong, recent positive selection. We propose that the 577X allele has been positively selected in some human populations owing to its effect on skeletal muscle metabolism.
Specialized roles for the pro-inflammatory cytokines tumor necrosis factor (TNF) and lymphotoxin (LT) were characterized in TNF/LT alpha -/- and TNF -/- mice established by direct gene targeting of C57BL/6 ES cells. The requirement for LT early in lymphoid tissue organogenesis is shown to be distinct from the more subtle and varied role of TNF in promoting correct microarchitectural organization of leukocytes in LN and spleen. Development of normal Peyer's patch (PP) structure, in contrast, is substantially dependent on TNF. Only mice lacking LT exhibit retarded B cell maturation in vivo and serum immunoglobulin deficiencies. A temporal hierarchy in lymphoid tissue development can now be defined, with LT being an essential participant in general lymphoid tissue organogenesis, developmentally preceeding TNF that has a more varied and subtle role in promotion of correct spatial organization of leukocytes in LN and spleen PP development in TNF -/- mice is unusual, indicating that TNF is a more critical participant for this structure than it is for other lymphoid tissues.
Tumor necrosis factor (TNF)–dependent sites of action in the generation of autoimmune inflammation have been defined by targeted disruption of TNF in the C57BL/6 mouse strain. C57BL/6 mice are susceptible to an inflammatory, demyelinating form of experimental autoimmune encephalomyelitis (EAE) induced by the 35–55 peptide of myelin oligodendrocyte glycoprotein. Direct targeting of a strain in which EAE was inducible was necessary, as the location of the TNF gene renders segregation of the mutated allele from the original major histocompatibility complex by backcrossing virtually impossible. In this way a single gene effect was studied. We show here that TNF is obligatory for normal initiation of the neurological deficit, as demonstrated by a significant (6 d) delay in disease in its absence relative to wild-type (WT) mice. During this delay, comparable numbers of leukocytes were isolated from the perfused central nervous system (CNS) of WT and TNF−/− mice. However, in the TNF−/− mice, immunohistological analysis of CNS tissue indicated that leukocytes failed to form the typical mature perivascular cuffs observed in WT mice at this same time point. Severe EAE, including paralysis and widespread CNS perivascular inflammation, eventually developed without TNF. TNF−/− and WT mice recovered from the acute illness at the same time, such that the overall disease course in TNF−/− mice was only 60% of the course in control mice. Primary demyelination occurred in both WT and TNF−/− mice, although it was of variable magnitude. These results are consistent with the TNF dependence of processes controlling initial leukocyte movement within the CNS. Nevertheless, potent alternative mechanisms exist to mediate all other phases of EAE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.