We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heat-waves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches.
Recent studies have reported germline mutations in cases of lobular breast cancer (LBC) not associated with the classical hereditary diffuse gastric cancer syndrome. A multidisciplinary workgroup discussed genetic susceptibility, pathophysiology and clinical management of hereditary LBC (HLBC). The team has established the clinical criteria for screening and results' interpretation, and created consensus guidelines regarding genetic counselling, breast surveillance and imaging techniques, clinicopathological findings, psychological and decisional support, as well as prophylactic surgery and plastic reconstruction. Based on a review of current evidence for the identification of HLBC cases/families, genetic testing is recommended in patients fulfilling the following criteria: (A) bilateral LBC with or without family history of LBC, with age at onset<50 years, and (B) unilateral LBC with family history of LBC, with age at onset <45 years. In asymptomatic mutant carriers, breast surveillance with clinical examination, yearly mammography, contrast-enhanced breast MRI and breast ultrasonography (US) with 6-month interval between the US and the MRI should be implemented as a first approach. In selected cases with personal history, family history of LBC and mutations, prophylactic mastectomy could be discussed with an integrative group of clinical experts. Psychodecisional support also plays a pivotal role in the management of individuals with or without germline alterations. Ultimately, the definition of a specific protocol for genetic screening and ongoing coordinated management of patients with HLBC is crucial for the effective surveillance and early detection of LBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.