Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has dramatically changed our world, country, communities, and families. There is controversy regarding risk factors for severe COVID-19 disease. It has been suggested that asthma and allergy are not highly represented as comorbid conditions associated with COVID-19. Objective: Our aim was to extend our work in IL-13 biology to determine whether airway epithelial cell expression of 2 key mediators critical for SARS-CoV-2 infection, namely, angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2), are modulated by IL-13. Methods: We determined effects of IL-13 treatment on ACE2 and TMPRSS2 expression ex vivo in primary airway epithelial cells from participants with and without type 2 asthma obtained by bronchoscopy. We also examined expression of ACE2 and TMPRSS2 in 2 data sets containing gene expression data from nasal and airway epithelial cells from children and adults with asthma and allergic rhinitis. Results: IL-13 significantly reduced ACE2 and increased TMPRSS2 expression ex vivo in airway epithelial cells. In 2 independent data sets, ACE2 expression was significantly reduced and TMPRSS2 expression was significantly increased in the nasal and airway epithelial cells in type 2 asthma and allergic rhinitis. ACE2 expression was significantly negatively associated with type 2 cytokines, whereas TMPRSS2 expression was significantly positively associated with type 2 cytokines. Conclusion: IL-13 modulates ACE2 and TMPRSS2 expression in airway epithelial cells in asthma and atopy. This deserves further study with regard to any effects that asthma and atopy may render in the setting of COVID-19 infection.
Chronic obstructive pulmonary disease (COPD) is linked to both cigarette smoking and genetic determinants. We have previously identified iron-responsive element binding protein 2 (IRP2) as an important COPD susceptibility gene, with IRP2 protein increased in the lungs of individuals with COPD. Here we demonstrate that mice deficient in Irp2 were protected from cigarette smoke (CS)-induced experimental COPD. By integrating RIP-Seq, RNA-Seq, gene expression and functional enrichment clustering analysis, we identified IRP2 as a regulator of mitochondrial function in the lung. IRP2 increased mitochondrial iron loading and cytochrome c oxidase (COX), which led to mitochondrial dysfunction and subsequent experimental COPD. Frataxin-deficient mice with higher mitochondrial iron loading had impaired airway mucociliary clearance (MCC) and higher pulmonary inflammation at baseline, whereas synthesis of cytochrome c oxidase (Sco2)-deficient mice with reduced COX were protected from CS-induced pulmonary inflammation and impairment of MCC. Mice treated with a mitochondrial iron chelator or mice fed a low-iron diet were protected from CS-induced COPD. Mitochondrial iron chelation also alleviated CS-impairment of MCC, CS-induced pulmonary inflammation and CS-associated lung injury in mice with established COPD, suggesting a critical functional role and potential therapeutic intervention for the mitochondrial-iron axis in COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.