Our understanding of Alzheimer’s disease pathogenesis is currently limited by difficulties in obtaining live neurons from patients and the inability to model the sporadic form of the disease. It may be possible to overcome these challenges by reprogramming primary cells from patients into induced pluripotent stem cells (iPSCs). Here we reprogrammed primary fibroblasts from two patients with familial Alzheimer’s disease, both caused by a duplication of the amyloid-β precursor protein gene1 (APP; termed APPDp), two with sporadic Alzheimer’s disease (termed sAD1, sAD2) and two non-demented control individuals into iPSC lines. Neurons from differentiated cultures were purified with fluorescence-activated cell sorting and characterized. Purified cultures contained more than 90% neurons, clustered with fetal brain messenger RNA samples by microarray criteria, and could form functional synaptic contacts. Virtually all cells exhibited normal electrophysiological activity. Relative to controls, iPSC-derived, purified neurons from the two APPDp patients and patient sAD2 exhibited significantly higher levels of the pathological markers amyloid-β(1–40), phospho-tau(Thr 231) and active glycogen synthase kinase-3β (aGSK-3β). Neurons from APPDp and sAD2 patients also accumulated large RAB5-positive early endosomes compared to controls. Treatment of purified neurons with β-secretase inhibitors, but not γ-secretase inhibitors, caused significant reductions in phospho-Tau(Thr 231) and aGSK-3β levels. These results suggest a direct relationship between APP proteolytic processing, but not amyloid-β, in GSK-3β activation and tau phosphorylation in human neurons. Additionally, we observed that neurons with the genome of one sAD patient exhibited the phenotypes seen in familial Alzheimer’s disease samples. More generally, we demonstrate that iPSC technology can be used to observe phenotypes relevant to Alzheimer’s disease, even though it can take decades for overt disease to manifest in patients.
SUMMARY Human pluripotent stem cells (hPSCs) are potential sources of cells for modeling disease and development, drug discovery, and regenerative medicine. However, it is important to identify factors that may impact the utility of hPSCs for these applications. In an unbiased analysis of 205 hPSC and 130 somatic samples, we identified hPSC-specific epigenetic and transcriptional aberrations in genes subject to X chromosome inactivation (XCI) and genomic imprinting, which were not corrected during directed differentiation. We also found that specific tissue types were distinguished by unique patterns of DNA hypomethylation, which were recapitulated by DNA demethylation during in vitro directed differentiation. Our results suggest that verification of baseline epigenetic status is critical for hPSC-based disease models in which the observed phenotype depends on proper XCI or imprinting, and that tissue-specific DNA methylation patterns can be accurately modeled during directed differentiation of hPSCs, even in the presence of variations in XCI or imprinting.
Lineage conversion of one somatic cell type into another constitutes an attractive approach for research and clinical use. Lineage conversion can proceed in a direct manner, in the absence of proliferation and multipotent progenitor generation, or in an indirect manner, by the generation of expandable multipotent progenitor states. Here we report on the development of a combined reprogramming methodology that, transitioning through a plastic intermediate state, allows for the generation of human mesodermal progenitor cells while circumventing the traditional hallmarks of pluripotency. Converted mesodermal progenitor cells demonstrated bi-potent differentiation potential and were able to generate endothelial and smooth muscle lineages. Importantly, human fibroblasts can be converted into angioblast-like progenitor cells by non-integrative approaches. Differentiated angioblast-like cells exhibit neo-angiogenesis and anastomosis in vivo. The methodology for indirect lineage conversion to angioblast-like cells described here adds to the armamentarium of reprogramming approaches aimed at the clinical treatment of ischemic pathologies.
Across different niches, subsets of highly functional stem cells are maintained in a relatively dormant rather than proliferative state. Our understanding of proliferative dynamics in tissue-specific stem cells during conditions of increased tissue turnover remains limited. Using a TetO-H2B-GFP reporter of proliferative history, we identify skeletal muscle stem cell, or satellite cells, that retain (LRC) or lose (nonLRC) the H2B-GFP label. We show in mice that LRCs and nonLRCs are formed at birth and persist during postnatal growth and adult muscle repair. Functionally, LRCs and nonLRCs are born equivalent and transition during postnatal maturation into distinct and hierarchically organized subsets. Adult LRCs give rise to LRCs and nonLRCs; the former are able to self-renew, whereas the latter are restricted to differentiation. Expression analysis revealed the CIP/KIP family members p21cip1 (Cdkn1a) and p27kip1 (Cdkn1b) to be expressed at higher levels in LRCs. In accordance with a crucial role in LRC fate, loss of p27kip1 promoted proliferation and differentiation of LRCs in vitro and impaired satellite cell self-renewal after muscle injury. By contrast, loss of p21cip1 only affected nonLRCs, in which myogenic commitment was inhibited. Our results provide evidence that restriction of self-renewal potential to LRCs is established early in life and is maintained during increased tissue turnover through the cell cycle inhibitor p27kip1. They also reveal the differential role of CIP/KIP family members at discrete steps within the stem cell hierarchy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.