Hypertrophic cardiomyopathy caused by triple sarcomere gene mutations was rare but conferred a remarkably increased risk of end-stage progression and ventricular arrhythmias, supporting an association between multiple sarcomere defects and adverse outcome. Comprehensive genetic testing might provide important insights to risk stratification and potentially indicate the need for differential surveillance strategies based on genotype.
Severe microvascular dysfunction is a potent long-term predictor of adverse LV remodeling and systolic dysfunction in HCM. Our findings indicate microvascular dysfunction as a potential target for prevention of disease progression and heart failure in HCM.
We proposed a novel computational framework, named chimEric tranScript detection algorithm (EricScript), for the identification of gene fusion products in paired-end RNA-seq data. Our simulation study on synthetic data demonstrates that EricScript enables to achieve higher sensitivity and specificity than existing methods with noticeably lower running times. We also applied our method to publicly available RNA-seq tumour datasets, and we showed its capability in rediscovering known gene fusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.