These authors contributed equally to this work. Humans settled the Caribbean ~6,000 years ago, with intensified agriculture and ceramic use marking a shift from the Archaic Age to the Ceramic Age ~2,500 years ago. To shed new light on the history of Caribbean people, we report genome-wide data from 184 individuals predating European contact from The Bahamas, Cuba, Hispaniola, Puerto Rico, Curaçao, and northwestern Venezuela. A largely homogeneous ceramic-using population most likely originating in northeastern South America and related to present-day Arawak-speaking groups moved throughout the Caribbean at least 1,800 years ago, spreading ancestry that is still detected in parts of the region today. These people eventually almost entirely replaced Archaic-related lineages in Hispaniola but not in northwestern Cuba, where unadmixed Archaic-related ancestry persisted into the last millennium. We document high mobility and inter-island connectivity throughout the Ceramic Age as reflected in relatives buried ~75 kilometers apart in Hispaniola and low genetic differentiation across many Caribbean islands, albeit with subtle population structure distinguishing the Bahamian islands we studied from the rest of the Caribbean and from each other, and long-term population continuity in southeastern coastal Hispaniola differentiating this region from the rest of the island. Ceramic-associated people avoided close kin unions despite limited mate pools reflecting low effective population sizes (2Ne=1000-2000) even at sites on the large Caribbean islands. While census population sizes can be an order of magnitude larger than effective population sizes, pan-Caribbean population size estimates of hundreds of thousands are likely too large. Transitions in pottery styles show no evidence of being driven by waves of migration of new people from mainland South America; instead, they more likely reflect the spread of ideas and people within an interconnected Caribbean world.
Humans settled the Caribbean ~6,000 years ago, with ceramic use and intensified agriculture marking a shift from the Archaic to the Ceramic Age ~2,500 years ago 1 – 3 . We report genome-wide data from 174 individuals from The Bahamas, Hispaniola, Puerto Rico, Curaçao, and Venezuela co-analyzed with published data. Archaic Age Caribbean people derive from a deeply divergent population closest to Central and northern South Americans; contrary to previous work 4 , we find no support for ancestry contributed by a population related to North Americans. Archaic lineages were >98% replaced by a genetically homogeneous ceramic-using population related to Arawak-speakers from northeast South America who moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools reflecting small effective population sizes which we estimate to be a minimum of Ne=500–1500 and a maximum of Ne=1530–8150 on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the analyzed individuals lived. Census sizes are unlikely to be more than ten-fold larger than effective population sizes, so previous estimates of hundreds of thousands of people are too large 5 – 6 . Confirming a small, interconnected Ceramic Age population 7 , we detect 19 pairs of cross-island cousins, close relatives ~75 kilometers apart in Hispaniola, and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically-differentiated groups from the mainland but instead reflected interactions within an interconnected Caribbean world 1 , 8 .
Despite the fundamental importance and high level of compartmentation of mitochondrial nucleotide metabolism in plants, our knowledge concerning the transport of nucleotides across intracellular membranes remains far from complete. Study of a previously uncharacterized Arabidopsis (Arabidopsis thaliana) gene (At4g01100) revealed it to be a novel adenine nucleotide transporter, designated ADNT1, belonging to the mitochondrial carrier family. The ADNT1 gene shows broad expression at the organ level. Green fluorescent protein-based cell biological analysis demonstrated targeting of ADNT1 to mitochondria. While analysis of the expression of b-glucuronidase fusion proteins suggested that it was expressed across a broad range of tissue types, it was most highly expressed in root tips. Direct transport assays with recombinant and reconstituted ADNT1 were utilized to demonstrate that this protein displays a relatively narrow substrate specificity largely confined to adenylates and their closest analogs. ATP uptake was markedly inhibited by the presence of other adenylates and general inhibitors of mitochondrial transport but not by bongkrekate or carboxyatractyloside, inhibitors of the previously characterized ADP/ATP carrier. Furthermore, the kinetics are substantially different from those of this carrier, with ADNT1 preferring AMP to ADP. Finally, isolation and characterization of a T-DNA insertional knockout mutant of ADNT1, alongside complementation and antisense approaches, demonstrated that although deficiency of this transporter did not seem to greatly alter photosynthetic metabolism, it did result in reduced root growth and respiration. These findings are discussed in the context of a potential function for ADNT1 in the provision of the energy required to support growth in heterotrophic plant tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.