BackgroundFacioscapulohumeral muscular dystrophy (FSHD) is one of the most common muscular dystrophies and is characterized by a non-conventional genetic mechanism activated by pathogenic D4Z4 repeat contractions. By muscle Magnetic Resonance Imaging (MRI) we observed that T2-short tau inversion recovery (T2-STIR) sequences identify two different conditions in which each muscle can be found before the irreversible dystrophic alteration, marked as T1-weighted sequence hyperintensity, takes place. We studied these conditions in order to obtain further information on the molecular mechanisms involved in the selective wasting of single muscles or muscle groups in this disease.MethodsHistopathology, gene expression profiling and real time PCR were performed on biopsies from FSHD muscles with different MRI pattern (T1-weighted normal/T2-STIR normal and T1-weighted normal/T2-STIR hyperintense). Data were compared with those from inflammatory myopathies, dysferlinopathies and normal controls. In order to validate obtained results, two additional FSHD samples with different MRI pattern were analyzed.ResultsMyopathic and inflammatory changes characterized T2-STIR hyperintense FSHD muscles, at variance with T2-STIR normal muscles. These two states could be easily distinguished from each other by their transcriptional profile. The comparison between T2-STIR hyperintense FSHD muscles and inflammatory myopathy muscles showed peculiar changes, although many alterations were shared among these conditions.ConclusionsAt the single muscle level, different stages of the disease correspond to the two MRI patterns. T2-STIR hyperintense FSHD muscles are more similar to inflammatory myopathies than to T2-STIR normal FSHD muscles or other muscular dystrophies, and share with them upregulation of genes involved in innate and adaptive immunity. Our data suggest that selective inflammation, together with perturbation in biological processes such as neoangiogenesis, lipid metabolism and adipokine production, may contribute to the sequential bursts of muscle degeneration that involve individual muscles in an asynchronous manner in this disease.
Our large-scale cross-sectional data provide preliminary evidence for the usefulness of MRI in clinical trials, and set the baseline for longitudinal studies. Muscle MRI can also be used for distinguishing facioscapulohumeral muscular dystrophy from other myopathies in selected cases. Finally, our results are consistent with a model that configures facioscapulohumeral muscular dystrophy as a "muscle-by-muscle" disease. Ann Neurol 2016;79:854-864.
BackgroundIn Facioscapulohumeral muscular dystrophy (FSHD), the upper girdle is early involved and often difficult to assess only relying on physical examination. Our aim was to evaluate the pattern and degree of involvement of upper girdle muscles in FSHD compared with other muscle diseases with scapular girdle impairment.MethodsWe propose an MRI protocol evaluating neck and upper girdle muscles. One hundred-eight consecutive symptomatic FSHD patients and 45 patients affected by muscular dystrophies and myopathies with prominent upper girdle involvement underwent this protocol. Acquired scans were retrospectively analyzed.ResultsThe trapezius (100% of the patients) and serratus anterior (85% of the patients) were the most and earliest affected muscles in FSHD, followed by the latissimus dorsi and pectoralis major, whilst spinati and subscapularis (involved in less than 4% of the patients) were consistently spared even in late disease stages. Asymmetry and hyperintensities on short-tau inversion recovery (STIR) sequences were common features, and STIR hyperintensities could also be found in muscles not showing signs of fatty replacement. The overall involvement appears to be disease-specific in FSHD as it significantly differed from that encountered in the other myopathies.ConclusionsThe detailed knowledge of single muscle involvement provides useful information for correctly evaluating patients' motor function and to set a baseline for natural history studies. Upper girdle imaging can also be used as an additional tool helpful in supporting the diagnosis of FSHD in unclear situations, and may contribute with hints on the currently largely unknown molecular pathogenesis of this disease.
We present three members of an Italian family affected by tubular aggregate myopathy (TAM) and congenital miosis harboring a novel missense mutation in ORAI1. All patients had a mild, late onset TAM revealed by asymptomatic creatine kinase (CK) elevation and congenital miosis consistent with a Stormorken-like Syndrome, in the absence of thrombocytopathy. Muscle biopsies showed classical histological findings but ultrastructural analysis revealed atypical tubular aggregates (TAs). The whole body muscle magnetic resonance imaging (MRI) showed a similar pattern of muscle involvement that correlated with clinical severity. The lower limbs were more severely affected than the scapular girdle, and thighs were more affected than legs. Molecular analysis revealed a novel c.290C>G (p.S97C) mutation in ORAI1 in all affected patients. Functional assays in both human embryonic kidney (HEK) cells and myotubes showed an increased rate of Ca entry due to a constitutive activation of the CRAC channel, consistent with a 'gain-of-function' mutation. In conclusion, we describe an Italian family harboring a novel heterozygous c.290C>G (p.S97C) mutation in ORAI1 causing a mild- and late-onset TAM and congenital miosis via constitutive activation of the CRAC channel. Our findings extend the clinical and genetic spectrum of the ORAI1-related TAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.