These authors contributed equally. SUMMARYCowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought-prone climates, and a primary source of protein in sub-Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K-499-35 include a whole-genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi-parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited-input small-holder farming and climate stress.
Multi-parent advanced generation inter-cross (MAGIC) populations are an emerging type of resource for dissecting the genetic structure of traits and improving breeding populations. We developed a MAGIC population for cowpea (Vigna unguiculata L. Walp.) from eight founder parents. These founders were genetically diverse and carried many abiotic and biotic stress resistance, seed quality and agronomic traits relevant to cowpea improvement in the United States and sub-Saharan Africa, where cowpea is vitally important in the human diet and local economies. The eight parents were inter-crossed using structured matings to ensure that the population would have balanced representation from each parent, followed by single-seed descent, resulting in 305 F recombinant inbred lines each carrying a mosaic of genome blocks contributed by all founders. This was confirmed by single nucleotide polymorphism genotyping with the Illumina Cowpea Consortium Array. These lines were on average 99.74% homozygous but also diverse in agronomic traits across environments. Quantitative trait loci (QTLs) were identified for several parental traits. Loci with major effects on photoperiod sensitivity and seed size were also verified by biparental genetic mapping. The recombination events were concentrated in telomeric regions. Due to its broad genetic base, this cowpea MAGIC population promises breakthroughs in genetic gain, QTL and gene discovery, enhancement of breeding populations and, for some lines, direct releases as new varieties.
<p>Northern Ghana is characterized by food insecurity largely due to over reliance on rain-fed agriculture under low farm input conditions. The present study investigated the effect of factors influencing mineral fertilizer adoption and use intensity among smallholder farmers in Northern Ghana. A total of 330 smallholder farmers selected through multi-stage sampling technique were interviewed. Adoption of fertilizer technology was determined by age, nativity, farm size, access to credit, and distance to agricultural office. The result of the truncated regression estimates indicated that income of household head, membership of farmer association, distance to agricultural office, access to input shop, income earning household that do not participate in agricultural development project and income earning male headed household were the significant factors influencing fertilizer use intensity. Distance to agricultural office was a key positive determinant of fertilizer adoption and use intensity. The study recommends improvement in road infrastructure and technical training of agricultural extension agents. Farmer based organization must be trained on regular basis to enhance their productive skills and technology uptake.</p>
These authors contributed equally. SUMMARYCowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought-prone climates, and a primary source of protein in sub-Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K-499-35 include a whole-genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi-parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited-input small-holder farming and climate stress.
A field experiment was conducted at Savanna Agricultural Research Institute in 2015 cropping season to examine the inheritance of early maturity among an extra-early maturing landrace Sanzi and a medium maturing variety Padi-Tuya and their progenies. The results indicated highly significant (P<0.01) genetic variations for the maturity indices, namely, days to first flower initiation (DFFI), days to 50% flowering (DFF), days to first pod maturity (DFPM), days to 90% pod maturity (DNPM), and plant height (P_PLT), seed per pod (S_Pod), and hundred seed weight (H_SWT). Heritability estimates for these traits varied from 74% to 99%. No significant differences (P>0.05) were observed between F1 and RF1, implying absence of maternal effect. The segregation ratio in the F2 population for early and medium maturity fitted into the ratio 3 : 1, indicating single dominant gene mode of inheritance. Significant positive correlations were found between DNPM, DFFI, DFF, and DFPM; hence selection criteria to improve early maturity of cowpea should focus on these traits. Grain yield also had significant positive correlations with maturity indices indicating high grain yield is associated with late maturity; therefore, high grain yield should be considered alongside early maturity when selecting progenies for earliness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.