The synthesis of (4-bromomethyl-4'-methylbipyridine) [bis(bipyridine)]ruthenium(II) hexafluorophosphate is described. This new reagent was found to selectively label the single sulfhydryl group at Cys-102 on yeast iso-1-cytochrome c to form the (dimethylbipyridine-Cys-102-cytochrome c)[bis(bipyridine)]ruthenium derivative (Ru-102-cyt c). Excitation of Ru-102-cyt c with a short light flash resulted in formation of excited-state Ru(II*), which rapidly transferred an electron to the ferric heme group to form Fe(II). When the cytochrome c peroxidase compound I (CMPI) was present in the solution, electron transfer from photoreduced Fe(II) in Ru-102-cyt c to the radical site in CMPI was observed. At high ionic strength (100 mM sodium phosphate and 25 mM EDTA, pH 7), second-order kinetics were observed with a rate constant of (7.5 +/- 0.7) x 10(7) M-1 s-1. The second-order rate constant for native iso-1-cytochrome c was (6.7 +/- 0.7) x 10(7) M-1 s-1 under these conditions. The second-order rate constant for electron transfer from Ru-102-cyt c to the radical site in CMPI increased as the ionic strength was decreased, reaching a value of (4.8 +/- 0.5) x 10(8) M-1 s-1 in 40 mM EDTA, pH 7. At lower ionic strength, a complex was formed between Ru-102-cyt c and CMPI, and the rate for intracomplex electron transfer to the radical site was found to be greater than 50,000 s-1.(ABSTRACT TRUNCATED AT 250 WORDS)
A new ruthenium-labeled cytochrome c derivative was designed to measure the actual rate of electron transfer to the Trp-191 radical cation and the oxyferryl heme in cytochrome c peroxidase compound I {CMPI(FeIV = O,R.+)}. The H39C,C102T variant of yeast iso-1-cytochrome c was labeled at the single cysteine residue with a tris (bipyridyl)ruthenium(II) reagent to form Ru-39-Cc. This derivative has the same reactivity with CMPI as native yCc measured by stopped-flow spectroscopy, indicating that the ruthenium group does not interfere with the interaction between the two proteins. Laser excitation of the 1:1 Ru-39-Cc-CMPI complex in low ionic strength buffer (2 mM phosphate, pH 7) resulted in electron transfer from RuII* to heme c FeIII with a rate constant of 5 x 10(5) s-1, followed by electron transfer from heme c Fe II to the Trp-191 indolyl radical cation in CMPI(FeIV = O,R*+) with a rate constant of k(eta) = 2 x 10(6) s-1. A subsequent laser flash led to electron transfer from heme c to the oxyferryl heme in CMPII-(FeIV = O,R) with a rate constant of k(etb) = 5000 s-1. The location of the binding domain was determined using a series of surface charge mutants of CcP. The mutations D34N, E290N, and A193F each decreased the values of k(eta) and k(etb) by 2-4-fold, consistent with the use of the binding domain identified in the crystal structure of the yCc-CcP complex for reduction of both redox centers [Pelletier, H., & Kraut, J. (1992) Science 258, 1748-1755]. A mechanism is proposed for reduction of the oxyferryl heme in which internal electron transfer in CMPII(FeIV = O,R) leads to the regeneration of the radical cation in CMPII-(FeIII,R*+), which is then reduced by yCcII. Thus, both steps in the complete reduction of CMPI involve electron transfer from yCcII to the Trp-191 radical cation using the same binding site and pathway. Comparison of the rate constant k(eta) with theoretical predictions indicate that the electron transfer pathway identified in the crystalline yCc-CcP complex is very efficient. Stopped-flow studies indicate that native yCcII initially reduces the Trp-191 radical cation in CMPI with a second-order rate constant ka, which increases from 1.8 x 10(8) M-1 s-1 at 310 mM ionic strength to > 3 x 10(9) M-1 s-1 at ionic strengths below 100 mM. A second molecule of yCcII then reduces the oxyferryl heme in CMPII with a second-order rate constant kb which increases from 2.7 x 10(7) M-1 s-1 at 310 mM ionic strength to 2.5 x 10(8) M-1 s-1 at 160 mM ionic strength. As the ionic strength is decreased below 100 mM the rate constant for reduction of the oxyferryl heme becomes progressively slower as the reaction is limited by release of the product yCcIII from the yCcIII-CMPII complex. Both ruthenium photoreduction studies and stopped-flow studies demonstrate that the Trp-191 radical cation is the initial site of reduction in CMPI under all conditions of ionic strength.
The reactions of bovine cytochrome c oxidase with horse cytochrome c derivatives labeled at specific lysine amino groups with (dicarboxybipyridine)bis(bipyridine)ruthenium (II) were studied by laser flash photolysis. All of the derivatives form complexes with cytochrome c oxidase at low ionic strength (5 mM sodium phosphate, pH 7). Excitation of Ru(II) to Ru(II*) with a short laser flash resulted in rapid electron transfer to the ferric heme group of cytochrome c, followed by electron transfer to cytochrome c oxidase. The photoreduced heme Fe(II) in the cytochrome c derivative modified at lysine 25 on the periphery of the heme crevice domain transferred an electron to CuA with a rate constant of 1.1 x 10(4) s-1. CuA then transferred an electron to cytochrome a with a rate constant of 2.3 x 10(4) s-1. The derivatives modified at lysines 7, 39, 55, and 60 remote from the heme crevice domain of cytochrome c have nearly the same kinetics. The rate constant for electron transfer from the cytochrome c heme to CuA is greater than 10(5) s-1, and the rate constant for electron transfer from CuA to cytochrome a is 2 x 10(4) s-1. The cytochrome c derivatives modified at lysines 13 and 27 in the heme crevice domain react much more slowly than the other derivatives, with intracomplex rate constants for oxidation of cytochrome c ranging from 1000 to 6000 s-1. The bulky ruthenium group at the heme crevice domain of these derivatives apparently alters the binding orientation, leading to smaller electron-transfer rates.(ABSTRACT TRUNCATED AT 250 WORDS)
Cytochrome c derivatives labeled at specific lysine amino groups with ruthenium bis(bipyridine) dicarboxybipyridine [RuII(bpy)2(dcbpy)] were prepared by using the procedure described previously [Pan, L. P., Durham, B., Wolinska, J., & Millett, F. (1988) Biochemistry 27, 7180-7184]. Four additional singly labeled derivatives were purified, bringing the total number to 10. These derivatives have a strong luminescence emission centered at 662 nm arising from the excited state, RuII*. Transient absorption spectroscopy was used to directly measure the rate constants for the photoinduced electron-transfer reaction from RuII* to the ferric heme group (k1) and for the thermal back-reaction from the ferrous heme group to RuIII (k2). The rate constants were found to be k1 = 14 X 10(6) s-1 and k2 = 24 X 10(6) s-1 for the derivative modified at lysine 72, which has a distance of 8-16 A between the ruthenium and heme groups. Similar rate constants were found for the derivatives modified at lysines 13 and 27, which have distances of 6-12 A separating the ruthenium and heme groups. The rate constants were significantly slower for the derivatives modified at lysine 25 (k1 = 1 X 10(6) s-1, k2 = 1.5 X 10(6) s-1) and lysine 7 (k1 = 0.3 X 10(6) s-1, k2 = 0.5 X 10(6) s-1), which have distances of 9-16 A. Transients due to photoinduced electron transfer could not be detected for the remaining derivatives, which have larger distances between the ruthenium and heme groups.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.