Opa1 participates in inner mitochondrial membrane fusion and cristae morphogenesis. Here, we show that muscle-specific Opa1 ablation causes reduced muscle fiber size, dysfunctional mitochondria, enhanced Fgf21, and muscle inflammation characterized by NF-κB activation, and enhanced expression of pro-inflammatory genes. Chronic sodium salicylate treatment ameliorated muscle alterations and reduced the muscle expression of Fgf21. Muscle inflammation was an early event during the progression of the disease and occurred before macrophage infiltration, indicating that it is a primary response to Opa1 deficiency. Moreover, Opa1 repression in muscle cells also resulted in NF-κB activation and inflammation in the absence of necrosis and/or apoptosis, thereby revealing that the activation is a cell-autonomous process and independent of cell death. The effects of Opa1 deficiency on the expression NF-κB target genes and inflammation were absent upon mitochondrial DNA depletion. Under Opa1 deficiency, blockage or repression of TLR9 prevented NF-κB activation and inflammation. Taken together, our results reveal that Opa1 deficiency in muscle causes initial mitochondrial alterations that lead to TLR9 activation, and inflammation, which contributes to enhanced Fgf21 expression and to growth impairment.
Background: Nrg4 expression has been linked to brown adipose tissue activity and browning of white adipocytes in mice. Here, we aimed to investigate whether these observations could be translated to humans by investigating NRG4 mRNA and markers of brown/beige adipocytes in human visceral (VAT) and subcutaneous adipose tissue (SAT). We also studied the possible association of NRG4 with insulin action.Methods: SAT and VAT NRG4 and markers of brown/beige (UCP1, UCP3, and TMEM26)-related gene expression were analyzed in two independent cohorts (n = 331 and n = 59). Insulin resistance/sensitivity was measured using HOMAIR and glucose infusion rate during euglycemic hyperinsulinemic clamp.Results: In both cohort 1 and cohort 2, NRG4 and thermogenic/beige-related gene expression were significantly increased in VAT compared to SAT. Adipogenic-related genes followed an opposite pattern. In cohort 1, VAT NRG4 gene expression was positively correlated with BMI and expression of UCP1, UCP3, TMEM26, and negatively with adipogenic (FASN, PPARG, and SLC2A4)- and inflammatory (IL6 and IL8)-related genes. In SAT, NRG4 gene expression was negatively correlated with HOMAIR and positively with UCP1 and TMEM26 gene expression. Multiple linear regression analysis revealed that expression of TMEM26 gene was the best predictor of NRG4 gene expression in both VAT and SAT. Specifically, NRG4 and TMEM26 gene expression was significantly increased in VAT, but not in SAT stromal vascular fraction cells (p < 0.001). In cohort 2, the significant association between NRG4 and TMEM26 gene expression in both VAT and SAT was confirmed, and SAT NRG4 gene expression also was positively correlated with insulin action and the expression of UCP1.Conclusion: Current findings suggest NRG4 gene expression as a novel marker of beige adipocytes in human adipose tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.